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Chapter 5: Real-Time Scheduling 
Worst-Case Execution Time (WCET), C: Maximum amount of time 
required to complete the execution of any instance of task without 
any interference from other activities 
Deadline, D: Maximum amount of time allowed between a task 
being released and its completion time. 
Worst-Case Response Time (WCRT), R: Maximum elapsed time 
between the release of a task instance and its completion 
Pre-emptive Priority-Driven Scheduling: Lower priority task that is 
current executing gets context switched out once a higher priority 
task becomes ready 
Hyper-Period: Least Common Multiple of the task periods 
Utilization: Fraction of processor time spent in the execution of 
the task set, 𝑈 = ∑ $%

&%'  

Critical Instant: The instant at which the release of the task will 
produce the largest response time 
Critical Instance: The task instance released at the critical instant 
Basic Real-Time Task Model 
1.Tasks are periodic with known periods and: 

a.Periods do not change with time 
b.Task is an infinite sequence of instance 
c.One instance is released at the beginning of each period 

2.Tasks are completely independent of each other 
3.System overhead for scheduling and context switch is negligible 
4.All tasks have hard deadline 
5.Assume D = P, to meet deadline, C ≤ R, R ≤ D 
Rate-Monotonic Scheduling for Fixed Priority 
1.Priority is inversely proportional to task period 
2.Scheduler repeats itself every hyper-period, i.e. task set is 

schedulable if no deadline is missed in one hyper-period 
3.If a task set is schedulable by any arbitrary but fixed-priority 

assignment, then it is schedulable by RMS 
4.U ≤ 1 is a necessary but not sufficient condition for any task set 

to have a feasible schedule i.e. even if U ≤ 1, task set may not 
have a feasible schedule 

5.Utilization Bound 𝑈 ≤ 𝑛(2
,
- − 1) is a sufficient but not necessary 

condition for any task set to have a feasible schedule i.e. though 
condition is not satisfied, task set may have feasible schedule 

6.Deadline must equal to period to use utilization bound analysis 
Rate-Monotonic Analysis 
A critical instant for any task occurs whenever it is released 
simultaneously with the release of all higher-priority task 
Necessary and Sufficient Condition 
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where 𝑇; …𝑇'>; are tasks with higher priority than 𝑇', inequality 
for 𝑤'(𝑡) ≤ 𝑡 holds for time instant 𝑡 where 𝑡 = 𝑘𝑝@, 𝑗 = 1,… , 𝑖 
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Earliest Deadline First for Dynamic Priority 
1.Dynamic priority scheduling scheme where task with the earliest 

headline has the highest priority 
2.Two Key Properties: 

a.Priority of task depends on the current deadline of the 
active task instance 

b.Scheduling decision must be considered only when any 
new task instance is released 

3.Optimal scheduling policy: 
a.EDF can always produce feasible schedule if 𝑈 ≤ 1 
b.Scheduling with dynamic priority is feasible iff 𝑈 ≤ 1 

4.Check entire hyper-period for feasibility using EDF 
Cyclic Executive for Fixed Tasks Sets (a.k.a hardcoding) 
1.Also known as timeline scheduling or cyclic scheduling 
2.Consists of periodic, independent tasks with deadline = period 
3.Creates a completely offline static schedule for the hyper-period 

that meets all the deadlines 
4.Put tasks in hypertask avoid scheduling/context switch overhead 
Cyclic Executive Implementation 
1.Repeats the same schedule for each major cycle 

a.Major cycle: LCM of period/deadline (hyper-period) 
2.Within each major cycle, minor cycles are synchronization points 

a.Minor cycle: GCD of period/deadlines 
3.Execution switches from one minor cycle to another at periodic 

timer interrupt 
4.Tasks within a minor cycle are activated in sequence 

 Positive Negative 
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Simpler implementation in commercial 
kernels that do not explicitly support 
constraints (periods/deadlines) 

Scheduling and 
context 
switching 
overhead 
 

E
D
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Full processor utilization (efficient 
exploitation of computational resources) 
Better aperiodic activities responsiveness 

C
E 

Minimizes pre-emption if schedule is constructed carefully 
No need for actual tasks; only procedural call (all procedures 
share same address space; task execute sequentially so no 
need to protect shared data as there is no concurrent access) 
Implementation is straightforward and effective 

Chapter 6: Synchronization 
Race condition due to concurrent access to shared data may result 
in data inconsistency  
Critical section: Code segment in a process accessing shared data 
Mutex: Special case of a semaphore where only one process can 
access shared resources at a time 
Synchronization Hardware 
Modern machine provides special atomic (non-interruptible) 
hardware instructions using TestAndSet which test and modify the 
content of a word atomically 

bool TestAndSet(bool *target) { 
    bool rv = *target; 
    *target = true; 
    return rv; 
} 

while (1) { 
    while (TestAndSet(&lock)); 
    // Critical Section 
    lock = false; 
    // Remainder section 
} 

Semaphore 
1.Defines semaphore as a record 
typedef struct { 
    int value; 
    //L is a queue that stores waiting processes in 
the form of PCB 
    struct process *L; 
} semaphore; 

Initialized queue to empty; set value to user-defined # (resources) 
2.Only accessed by 2 atomic operations: 

a.P(S) – before accessing shared object, check whether the 
value of semaphore s is greater than 0; if yes decrement 
the value and return without blocking; else put the process 
into the queue associated with s and blocks the process 

b.V(s) – after accessing shared object, check whether the 
queue associated with semaphore s is empty; if yes, 

increment the value of s, else, pick a blocked process in the 
queue and move it into ready state for execution 

3.Consists of 2 simple operations: 
a.block() – dequeue current process from ready queue and 

enqueue current process to semaphore queue 
b.wakeup(P) – dequeue a process P from semaphore queue 

and enqueue process P to ready queue 
//P(S) 
if (S.value > 0) { 
    S.value++ 
} else { 
    block(); 
} 

//V(S) 
if (S.L.empty()) { 
    S.value++; 
} else { 
    wakeup(P); 
} 

Priority Inversion 
1.High priority task is delayed by lower priority tasks because they 

have control over resources which high priority task requires 
2.Happens when 3 or more processes are involved: low priority 

process has the lock, high priority process needs the lock, mid 
priority process doesn’t need the lock  

3.Mid priority process can indefinitely delay high priority process 
by not allowing low priority process to complete critical section 
to release the lock 

Priority Inheritance 
1.Priority of low priority process is temporarily raised to the 

priority of the high priority process when low priority process is 
running and holding a lock and if a high priority process 
attempts to acquire the lock 

2.Priority of the low priority process is set back to low priority 
after releasing the lock 

3.Ensures that mid priority process that does not require the lock 
cannot pre-empt low priority process 

 
Chapter 7: Inter-Task Communications 
Message Passing: 
1.Less efficient but more scalable than shared memory 
2.Processes communicate/synchronize without shared variables 
3.Provides two operations: a. send(message) and b. 
receive(message) where message size fixed or variable 

4.Messages are not shared among processes; ownership of 
message is passed from sender to receiver when message is 
transferred (modifications done are local and does not affect 
either party) so mutual exclusion is not a concern 

Naming Schemes: 
Type Sender Receiver 
Direct Name the receiver 

by its identifier 
N.A. 

Indirect Names the same intermediate entity called 
mailbox/channel/message queue 

Symmetric Names the receiver/ 
destination mailbox 

Names the 
sender/source 
mailbox 

Asymmetric N.A. 
Receiver Synchronization Model: 
Blocking: Receiver wait for a message if it is not already available 
Non-Blocking: Checks whether a message is available; if yes, 
retrieves the message, else move on without waiting for message 
Synchronous Message Passing: 
1.Sender invoking send() is blocked till receiver receive() 
2.Receiver invoking receive() is blocked till sender send() 
3.No intermediate buffering is required since sender is forced to 

wait till receiver is ready i.e. message can be kept by the sender 
till receiver is ready and transfer message from sender’s to 
receiver’s address space directly 

Asynchronous Message Passing: 
1.Sender is never blocked even if receiver has not receive() 
2.System buffers the message up to a maximum capacity 
3.Receiver invoking receive() is blocked till buffer has message 
4.receive() performed by the receiver completes immediately 

5.Asynchronous communication is generally a good choice but: 
a.Too much freedom for programmer; program is complex 
b.Finite buffer size means system is not truly asynchronous 

(sender waits when buffer is full or return error) 
FreeRTOS Message Queues: 
1.Employs symmetric, indirect naming scheme with asynchronous 

message passing and finite buffers 
2.Consists of 2 task waiting lists: 

a.Receiving waiting list consists of tasks that wait on the 
queue when it is empty 

b.Sending task waiting list consists of tasks that wait on the 
queue when it is full 

3.If more than one tasks were blocked on the same queue, the 
task with highest priority is unblocked first 

FreeRTOS Semaphores: 
Relies on message queues for blocked processes 
 
Chapter 8: Deadlocks 
Deadlock: Set of blocked processes each holding a resource and 
waiting to acquire a resource held by another process 
Resource Allocation Graph: 
1.Vertices partitioned into two types: 

a.P = {P1, P2, …, Pn} consisting of all processes 
b.R = {R1, R2, …, Rn} consisting of all resources 

2.Request edge: directed edge Pi®Rj  
3.Assignment edge: directed edge Rj ® Pi 
4.If graph contains no cycles Þ no deadlock 
5.If graph contains a cycle Þ deadlock if only one instance per 

resource type; possibility of deadlock if several instances per 
resource type 

Deadlock Conditions: 
1.Mutual exclusion: only one process can use a resource at a time 
2.Hold & wait: process holding at least one resource is waiting to 

acquire additional resources held by other processes 
3.No pre-emption: resource can be released only voluntarily by 

the process holding it after the process has completed its task 
4.Circular wait: exist a set {P0, P1, …, PN} of waiting processes such 

that P0 is waiting for P1, and P1 is waiting for P2 etc 
Deadlock Prevention: 
1.Mutual exclusion – not required for sharable resources; must 

hold for non-sharable resources 
a.Sharable resources: code section, read-only data 
b.Non-shareable resources: printer, data areas to be written 

2.Hold & wait – must guarantee that whenever a process requests 
a resource, it does not hold any other resources 

3.No pre-emption – if a process that is holding some resources 
requests another resource that cannot be immediately 
allocated, all resources being held are released 

4.Circular wait – impose a total ordering of all resource types (limit 
maximum number of processes running at any point in time) 

Deadlock Avoidance: 
1.Algorithm dynamically examines resource-allocation state to 

ensure that system never goes into unsafe state 
2.System is in safe state if there exists a safe sequence of all 

processes 
3.No deadlock if system is in safe state; else possibility of deadlock 
Banker’s Algorithm: 
Let n = number of processes, m = number of resources type: 
1.available[m]; if available[j] = k, k instances of Rj available 
2.max[n, m]; if max[i, j] = k, Pi request max k instance of Rj 
3.allocation[n][m]; allocation[i, j] = k, Pi is allocated k of Rj 
4.need[n][m]; need[i,j] = k, Pi may need k more Rj to complete 

i.e. need[i, j] = max[i, j] – allocated[i, j] 
Safety Algorithm: 
1.Initialize work[m] = available, finish[n] = (false, n) 
2.Find an i such that both finish[i] = false and need[i][j] £ 
work[j] for all j; if no such i exists, proceed to step 4 



xianhao@comp.nus.edu.sg CG2271 AY18/19 S1 
3.Update work[j] = work[j] + allocation[i, j] for all j, 
finish[i] = true 

4.If finish[i] = true for all i, system is in safe state; else, unsafe 
Resource-Request Algorithm: 
Each i, request[m]; if request[j] = k, Pi requires k instance of Rj 
1.If request[j] ³ need[i, j] for all j, raise error as exceed max 
2.If request[j] ³ available[j] for all j, process must wait 
3.Pretend to allocate request resources to Pi by modifying: 

a.Available = Available – Requesti 
b.Allocationi = Allocationi + Requesti 
c.Needi = Needi – Requesti 

4.Safety algorithm; if safe allocate resource; else don’t allocate 
 
Chapter 9: Memory Allocation 
Holes are contiguous block of free memory 
Chunks are contiguous block of allocated memory 
Memory Allocation: 
1.Memory is requested and granted in contiguous blocks 

a.malloc (to allocate memory) – finds sufficient contiguous 
memory, reserves the memory and returns the address of 
the first byte of the memory 

b.free (memory becomes available for reallocation) – gives 
address of the first byte of memory to free 

2.Ways of Memory Allocation: 
a.Variable allocation size: allocates the exact size of request 
b.Fixed allocation size: fixed allocation size determined by OS 

Fragmentation: 
Segment of memory is unusable after allocation and de-allocation 

 Properties Benefit 
External For variable allocation 

size memory 
Memory remains 
unallocated 

Fragmented memory 
can be compacted later 

Internal For fixed allocation size 
memory 
Memory is allocated but 
unused 

Less overhead to keep 
track of free memory 
(since memory are 
allocated in blocks) 

Free List (For External Fragmentation) 
1.Doubly linked list of free space; pointers build directly into holes 
2.Prefer holes to be as large as possible: 

a.Large holes can satisfy small requests 
b.Less overhead in tracking memory 
c.Faster search for available memory due to fewer holes 

3.When memory is freed, place memory in free list and set next 
and previous pointers 

4.Merge with holes before and/or after if possible 
Allocation Algorithms: 

 Properties Comments 
Best 
Fit 

Pick smallest hole that satisfy 
request 

Must search entire list 
(inefficient) 
Tends to leave lots of 
small hole (greater 
external fragmentation) 

Worst 
Fit 

Pick largest hole to satisfy 
request 

First 
Fit 

Pick the first hole large 
enough to satisfy the request 
Always start from the first 
hole for when searching 

Faster than best/worst 
fit 
Fragmentation issues 
like best fit 

Next 
Fit 

Pick the first hole large 
enough to satisfy the request 
Start search from where last 
search left off 

Faster than first fit 
depending on arrival 
pattern of data 

Note: No absolute solution to determine if best/worst fit is better 
Compaction (for External Fragmentation) 
Simple Solution: Move all allocated memory locations to one end 
and combine all holes on the other end to form a large hole 
Problem: Tremendous overhead to copy data (system is frozen 
cannot serve other request); must find all pointer values (difficult) 
 

Bitmap Allocation (For Fixed-Size Allocation) 
Maintains a 1-bit array in the OS with each bit corresponds to the 
state of 1 block (allocation unit determined by OS) 
Multiple Free Lists 
1.Keep multiple lists of different hole sizes and take hole from a 

list that closely matches size of request (⌈logK 𝑁⌉) 
2.Start out with a single large hole and upon request, keep dividing 

hole by 2 until appropriate size is reached 
a.Hole size is usually a power of 2 
b.New hole is added to a different free list at every division 

3.Once a hole is created, it cannot merge with another hole 
4.Request cannot be larger than maximum size of hole 
5.Faster search time (log N) but lower (50%) utilization 
Buddy System 
1.Memory is sub-divided into a binary tree where each hole in a 

free list has a buddy (having the same parent) 
2.Memory buddies can combine to form new holes twice the size 

that are aligned on proper boundary 

 
3.When allocating memory, start from the list that closely matches 

size of hole (⌈logK 𝑁⌉); if list is empty, go up one level, take a 
hole and break it into 2 before giving one to user 

4.When freeing memory, if the chunk is returned and its buddy are 
in the free list, merge them and move the hole up one level 

 
Chapter 10: Virtual Memory 
Virtual Address Space: Set of N = 2N virtual addresses 
Physical Address Space: Set of M = 2M physical addresses (where 
N > M, i.e. each byte in physical main memory has one physical 
address but can have 0 or more virtual addresses) 
Virtual Memory: 
1.Program refers to virtual memory address space 

a.Memory is a very large array of byte with each byte having 
its own address 

b.System provides address space “private” to process 
2.Allocation of process memory by compiler and run-time system 

a.Location different program address should be stored 
b.All allocation should be within single virtual address space 

3.Solves the following problem: 
a.Fitting a huge memory into a tiny physical memory 
b.Managing memory space of multiple processes 
c.Protecting processes from interfering each other’s memory 
d.Allowing processes to share common parts of memory 

Indirection: 
1.Any problem in Computer Science can be solved by adding 

another level of indirection – flexible mapping between name 
and thing allows changing the thing without notifying the holder 
of the name 

2.Each process gets its own private virtual address space, which is 
mapped to physical memory 

Pages: 
1.Virtual memory can be thought of as an array of N = 2N 

contiguous bytes stored on a disk partitioned into number of 
blocks called pages (size of page P = 2P bytes) 

2.Physical main memory (DRAM) is used as a cache for some pages 
of the virtual memory array 

3.Access to page ID with page number bits; access to individual 
bytes on the page with page offset bits 

Status of Virtual Memory: 
Unallocated: Page is not being used by the process 
Uncached: Page is being used by the process; not cached in DRAM 

Cached: Page is being used by the process; cached in DRAM 
Page Size: 
1.Page size is usually large as disk has a lower bandwidth (10,000x 

slower) than DRAM (slow for first byte, fast for consecutive) 
2.Transfer between disk and DRAM through DMA 
3.Larger page size has the advantages of fewer page faults (spatial 

locality), page table can be smaller and fewer TLB misses; but 
page faults will also be more expensive and wasted space has 
pages are under-utilized 

Page Tables: 
1.Page table is an array of page table entries that maps virtual 

pages to physical pages 
2.One page table per process, stored in the main memory DRAM 
3.Page table should have one page table entry corresponding to 

each virtual page (i.e. 256 virtual page requires 256 PTE) 
4.Key fields in each PTE are a bit that stores the status of 

corresponding virtual page (0 for uncached, 1 for cached) and 
physical page number, if virtual page is cached in DRAM 

5.In most cases, MMU performs address translation on its own 
without software assistance 

Page Hit: 
Reference to virtual memory byte that is in physical memory 
1.Processor sends virtual address to MMU 
2.MMU fetches PTE from the page table stored in DRAM 
3.MMU sends physical address to memory to DRAM 
4.DRAM sends data word to processor 

 
Page Fault: 
Reference to virtual memory byte that is not in physical memory 
1.Processor sends virtual address to MMU 
2.MMU fetches PTE from the page table stored in DRAM 
3.Valid bit fetched is 0, so MMU triggers page fault exception 
4.Handler identifies victim (and if dirty, pages it out to disk) 
5.Handler pages in new page and updates PTE in memory 
6.Handler returns to original process, restarting faulty instruction 

 
Overhead of Page Faults: 1. I/O overhead from loading of page 
from disk to DRAM, writing dirty page to disk; 2. Execution 
overhead when executing page fault ISR 
Translation Speed: 
1.MMU accesses memory at least twice: once to get the PTE for 

translation and another to get actual memory request from CPU 
2.PTE may be cached in L1 cache but they may be evicted by other 

data references, and hit in L1 cache still requires 1-3 cycles 
3. To speed up translation, add another cache known as 

Translation Lookaside Buffer (TLB) to eliminate overhead: 
a.Small hardware cache inside MMU that maps virtual page 

numbers to physical page numbers 
b.Contains PTEs for small number of virtual pages 

Calculation: 
1.Virtual address space bit = OS address length or log2(VAS in byte) 
2.Physical address space bit = log2(RAM size in byte) 
3.Offset bit = log2(page size in bytes) 
4.Number of virtual pages = VAS/page size in byte 

5.Number of physical pages = RAM size in byte/page size in byte 
6.Virtual page number bits = virtual address – offset or 

log2(Number of virtual pages) 
7.Physical page number bits = physical address – offset or 

log2(Number of physical pages) 

 
Chapter 4: Task Management 
Process in Memory: 
1.Stack: stores parameters and local variables in a function 
2.Heap: stores dynamically allocated variable (eg. malloc) 
3.Data: stores global parameters 
4.Text: Stores code section, program 
Process Control Block: 
1.Pointer: Locate next PCB in queue 
2.Process State: Maintain state of process 
3.Process ID: Identifier for each process 
4.CPU Registers: Stores temporary data in CPU cache 
5.Program Counter: Pointer to the next instruction 
6.Memory Management Information: Starting and ending point in 

the memory structure (memory pointer) 
7.Information of Open Files 
PCBs are stored in main memory for security. 
Process State: Created 
•Immediately after creation with valid PCB 
•OS has initialized the PCB of the process 
•Process only created if exist minimum resources to support it 
•Does not compete CPU with other processes for execution yet 
Process State: Ready 
•Process is willing and competes with other processes to execute 
•No processor available to execute it yet 
•Admission control of OS enables transition from Created to Ready 
Process State: Running 
•Process is being actively executed by a processor 
•As processor can only have one running process at any moment, 

Scheduler of OS which is transparent to the process enables 
transition from Ready to Running 

Process State: Block 
•Process is waiting for an event i.e. completion of I/O operation, 

synchronization/communication with other process 
•Process does not compete for execution in this state 
Process State: Terminated 
•Process has completed execution and can no longer be executed 
•PCB is still available for other processes to retrieve/examine 

information in PCB (eg. retrieval of exception handling) 
•Process and PCB are eventually removed from system 

 


