
xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

1

Chapter 1 Sorting

Algorithm Type Recursive Stable In-Place Time Complexity
Random Sorted

Ascending Descending
Bubble Sort Comparison √ √ 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁2)
Selection Sort Comparison √ 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2)
Insertion Sort Comparison √ √ 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁2)
Merge Sort Comparison √ √ 𝑂𝑂(𝑁𝑁 log𝑁𝑁) 𝑂𝑂(𝑁𝑁 log𝑁𝑁) 𝑂𝑂 (𝑁𝑁 log𝑁𝑁)
Quick Sort Comparison √ √ 𝑂𝑂(𝑁𝑁 log𝑁𝑁) 𝑂𝑂(𝑁𝑁2) 𝑂𝑂(𝑁𝑁2)
Random Quick Sort Comparison √ 𝑂𝑂(𝑁𝑁 log𝑁𝑁) 𝑂𝑂(𝑁𝑁 log𝑁𝑁) 𝑂𝑂(𝑁𝑁 log𝑁𝑁)
Counting Sort Non-Comparison √ 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁)
Radix Sort Non-Comparison √ 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁)

Additional Notes:

1. All comparison-based sorting algorithms have a lower-bound time complexity of Ω(𝑁𝑁 log2 𝑁𝑁).
2. Non-comparison-based sorting algorithms achieved linear time complexity with the presence of certain assumptions.

Bubble Sort

Algorithm Outline:

1. Compare a pair of adjacent items (𝑎𝑎, 𝑏𝑏).
2. Swap that pair if the items are out of order (eg. when 𝑎𝑎 > 𝑏𝑏).
3. Repeat steps 1 and 2 until the end of array (the last pair is the (𝑁𝑁 − 2)-th and (𝑁𝑁 − 1)-th items due to 0-based indexing).
4. By now, the largest item will be at the last position. Reduce 𝑁𝑁 by 1 and repeat Step 1 until 𝑁𝑁 = 1.
5. Optimize by implementing a check where the sorting will be terminated early if no swapping is done.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

2

void BubbleSort(int arr[], int size) {
 int temp;
 bool swapEncountered;

 for (int limit = size-2; limit >= 0; limit--) {
 swapEncountered = false;
 for (int i=0; i<=limit; i++) {
 if (arr[i] > arr[i+1]) {
 temp = arr[i];
 arr[i] = arr[i+1];
 arr[i+1] = temp;
 swapEncountered = true;
 }
 }
 if(!swapEncountered){
 break;
 }
 }
}

Insertion Sort

Algorithm Outline:

1. Start with item 𝑋𝑋, in the range of [𝐿𝐿. . .𝑁𝑁 − 1].
2. Check for the insertion point of 𝑋𝑋 (eg. between 𝑁𝑁 and 𝑀𝑀 where 𝑁𝑁 < 𝑋𝑋 and 𝑀𝑀 > 𝑋𝑋) and insert 𝑋𝑋.
3. Increase the lower bound 𝐿𝐿 by 1 and repeat steps 1 and 2 until 𝐿𝐿 = 𝑁𝑁 − 1.

void InsertionSort(int arr[], int size) {
 int temp;

 for (int i = 1; i < size; i++) { // O(N)
 temp = arr[i]; // temp is the item to be inserted
 for (int j = i-1; j >= 0 && arr[j] > temp; j--) // can be fast or slow
 arr[j+1] = arr[j]; // make a place for temp
 arr[j+1] = temp; // this is the insertion point
 }
}

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

3

Selection Sort

Algorithm Outline:

1. Find the position of the smallest item 𝑋𝑋, in the range of [𝐿𝐿. . .𝑁𝑁 − 1].
2. Swap X with the 𝐿𝐿-th item.
3. Increase the lower-bound 𝐿𝐿 by 1 and repeat step 1 and 2 until 𝐿𝐿 = 𝑁𝑁 − 2.

void SelectionSort(int arr[], int size) {
 int min_index, temp;

 for (int start = 0; start < size-1; start++) {
 min_index = start;
 for (int i = start+1; i < size; i++){
 if (arr[i] < arr[min_index]) {
 min_index = i;
 }
 }
 temp = arr[start];
 arr[start] = arr[min_index];
 arr[min_index] = temp;
 }
}

Merge Sort

Algorithm Outline:

1. Merge each pair of individual element (which is by default, sorted) into sorted arrays of 2 elements.
2. Merge each pair of sorted arrays of 2 elements into sorted arrays of 4 elements.
3. Repeat the process.
4. Merge 2 sorted arrays of 𝑁𝑁

2
 elements to obtain a fully sorted array of 𝑁𝑁 elements.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

4

void merge(int a[], int low, int mid, int high) {

 // subarray1 = a[low..mid], subarray2 = a[mid+1..high], both sorted
 int N = high-low+1;
 int b[N];
 int left = low, right = mid+1, bIdx = 0;

 while (left <= mid && right <= high) // the merging
 b[bIdx++] = (a[left] <= a[right]) ? a[left++] : a[right++];
 while (left <= mid)
 b[bIdx++] = a[left++]; // leftover, if any
 while (right <= high)
 b[bIdx++] = a[right++]; // leftover, if any
 for (int k = 0; k < N; k++)
 a[low+k] = b[k]; // copy back
}

void MergeSort(int a[], int low, int high) {
 // the array to be sorted is a[low..high]
 if (low < high) { // base case: low >= high (0 or 1 item)
 int mid = (low+high) / 2;
 MergeSort(a, low , mid); // divide into two halves
 MergeSort(a, mid+1, high); // then recursively sort them
 merge(a, low, mid, high); // conquer: the merge routine
 }
}

Additional Notes:

1. The actual execution of MergeSort()does not split to two subarrays level by level, but it recursively sorts the left subarray first before dealing with the right subarray.
2. The number of times MergeSort() is called is log𝑁𝑁 times and in each call of MergeSort(), there are 𝑁𝑁 comparisons made. Hence, the time complexity is

𝑂𝑂(𝑁𝑁 log𝑁𝑁).
3. Merge Sort guarantees its 𝑂𝑂(𝑁𝑁 log𝑁𝑁) performance regardless of the original ordering of the input.
4. Merge Sort however has a space complexity of 𝑂𝑂(𝑁𝑁) i.e. not memory efficient.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

5

Quick Sort

Algorithm Outline:

1. Choose an item 𝑝𝑝 (known as the pivot).
2. Then partition the items of 𝑎𝑎[𝑖𝑖. . 𝑗𝑗] into three parts: 𝑎𝑎[𝑖𝑖. .𝑚𝑚 − 1], 𝑎𝑎[𝑚𝑚], and 𝑎𝑎[𝑚𝑚 + 1. . 𝑗𝑗]:

a. 𝑎𝑎[𝑖𝑖. .𝑚𝑚− 1] (possibly empty) contains items that are smaller than 𝑝𝑝.
b. 𝑎𝑎[𝑚𝑚] is the pivot 𝑝𝑝, i.e. index 𝑚𝑚 is the correct position for 𝑝𝑝 in the sorted order of array 𝑎𝑎.
c. 𝑎𝑎[𝑚𝑚 + 1. . 𝑗𝑗] (possibly empty) contains items that are greater than or equal to 𝑝𝑝.

3. Recursively sort the two parts.

int partition(int arr[], int i, int j) {
 int p = arr[i]; // p is the pivot
 int m = i; // S1 and S2 are initially empty
 for (int k = i+1; k <= j; k++) { // explore the unknown region
 if (arr[k] < p) {
 m++;
 swap(arr[k], arr[m]); // C++ STL algorithm std::swap
 } // notice that we do nothing in case 1: a[k] >= p
 }
 swap(arr[i], arr[m]); // final step, swap pivot with arr[m]
 return m; // return the index of pivot, to be used by Quick Sort
}

void quickSort(int arr[], int low, int high) {
 if (low < high) {
 int pivotIdx = partition(arr, low, high); // O(N)
 // a[low..high] ~> a[low..pivotIdx–1], pivot, a[pivotIdx+1..high]
 quickSort(arr, low, pivotIdx-1); // recursively sort left subarray
 // a[pivotIdx] = pivot is already sorted after partition
 quickSort(arr, pivotIdx+1, high); // then sort right subarray
 }
}

Additional Notes:

1. Partitioning function has a time complexity of 𝑂𝑂(𝑁𝑁).

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

6

Counting Sort:

Assumption: Items to be sorted are integers with small range.

Algorithm Outline:

1. Count the frequency of occurrence of each integer (in that small range).
2. Loop through that small range to output the items in sorted order.

Additional Notes:

1. The time complexity is 𝑂𝑂(𝑁𝑁) to count the frequencies and 𝑂𝑂(𝑁𝑁 + 𝑘𝑘) to print out the output in sorted order where 𝑘𝑘 is the range of the input integers.
2. Counting Sort is not feasible when 𝑘𝑘 is relatively big due to memory limitation, since there is the need to store frequencies of those 𝑘𝑘 integers.

Radix Sort:

Assumption: Items to be sorted are integers with large range but of few digits.

Algorithm Outline:

1. Treat each item to be sorted as a string of 𝑤𝑤 digits (pad integers that have less than w digits with leading zeroes if necessary).
2. From the least significant (rightmost) digit to the most significant digit (leftmost), pass through the 𝑁𝑁 items and put them according to the active digit into 10 Queues

(one for each digit [0. .9]).
3. Re-concatenate the groups again for subsequent iteration.

Additional Notes:

1. Radix sort is a modified counting sort to achieve the linear time complexity and preserve stability.
2. Time complexity is 𝑂𝑂(𝑤𝑤(𝑁𝑁 + 𝑘𝑘)) where 𝑤𝑤 is the number of digits.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

7

Additional Notes:

1. Algorithm in the form of 𝑂𝑂 �1 + 1
2

+ 1
3

+ ⋯+ 1
𝑁𝑁
� follows the harmonic series and thus have a time complexity of 𝑂𝑂(log𝑁𝑁).

2. Algorithm in the form of 𝑂𝑂(𝑁𝑁 + 𝑁𝑁
2

+ 𝑁𝑁
4

+ ⋯+ 𝑁𝑁
𝑁𝑁

) follows the convergent geometric series and thus have a time complexity of 𝑂𝑂(2𝑁𝑁) = 𝑂𝑂(𝑁𝑁).

Chapter 2 Linked List
Basic Operators

Operators Functions
get(i) Return element 𝑎𝑎𝑖𝑖 at index 𝑖𝑖
search(v) Check if item/data 𝑣𝑣 exists and returns its index if it exists
insert(i, v) Insert item/data 𝑣𝑣 at index 𝑖𝑖
remove(i) Remove element 𝑎𝑎𝑖𝑖 at index 𝑖𝑖

Array Implementation

Properties:

1. Contiguous in memory i.e. each element is connected to one another in actual memory allocation.
2. Must be a compact array (array with no gap) i.e. if there are 𝑁𝑁 items in the array (that has size 𝑀𝑀, where 𝑀𝑀 ≥ 𝑁𝑁), then only index [0. .𝑁𝑁 − 1] are occupied and

other indices [𝑁𝑁. .𝑀𝑀 − 1] should remain empty.

Advantages Disadvantages
Simple construct to handle a collection of items Size of compact array in static-size array types is not infinite, but finite, and maximum

size may not be known in advanced, resulting in unused or extra space
Some operations are faster as opposed to linked list ADT Dynamic size array types still pose issue of space wastage and copying/shifting items

overhead

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

8

Operators Functions Time Complexity
Best Case Worst Case

get(i) Returns A[i].
This simple operation will be unnecessarily complicated if the array is not compact.

𝑂𝑂(1)

search(v) Check each index 𝑖𝑖 ∈ [0. .𝑁𝑁 − 1] if A[i] == v.
This is because v (if it exists) can be anywhere in index [0..N-1].

𝑂𝑂(1)
𝑣𝑣 is found at the first position

𝑂𝑂(𝑁𝑁)
𝑣𝑣 is not found in the list

insert(i, v) Shift items ∈ [𝑖𝑖. .𝑁𝑁 − 1] 𝑡𝑡𝑡𝑡 [𝑖𝑖 + 1. .𝑁𝑁] (from backwards) and set A[i] = v.
This is so that v is inserted correctly at index i and maintain compactness.

𝑂𝑂(1)
insert at 𝑖𝑖 = 𝑁𝑁 , there is no
shifting of element

𝑂𝑂(𝑁𝑁)
insert at 𝑖𝑖 = 0, we shift all
N elements, 𝑂𝑂(𝑁𝑁)

remove(i) Shift items ∈ [𝑖𝑖 + 1. .𝑁𝑁 − 1] to [𝑖𝑖. .𝑁𝑁 − 2], overwriting the old A[i].
This is to maintain compactness.

𝑂𝑂(1)
remove at 𝑖𝑖 = 𝑁𝑁 − 1, there is
no shifting of element

𝑂𝑂(𝑁𝑁)
remove at 𝑖𝑖 = 0, shift all
𝑁𝑁 elements

Linked List

Properties:

1. Non-contiguous memory i.e. each element is not connected to one another in actual memory allocation.
2. Elements are ordered from index 0 to index 𝑁𝑁 − 1 by associating item 𝑖𝑖 with its neighbour item 𝑖𝑖 + 1 through a pointer.
3. Structure of a single vertex of Singly Linked List (SLL) resembles the following:

struct Vertex { // we can use either C struct or C++/Java class
 int item; // the data is stored here, an integer in this example
 Vertex* next; // this pointer tells us where is the next vertex
};

4. A head and a tail pointer pointing to 𝑎𝑎0 element and 𝑎𝑎𝑁𝑁−1 element respectively.
5. Structure of a single vertex of Doubly Linked List (DLL) resembles the following:

struct Vertex { // we can use either C struct or C++/Java class
 int item; // the data is stored here, an integer in this example
 Vertex* next; // this pointer tells us where is the next vertex
 Vertex* prev; // this pointer tells us where is the previous vertex
};

6. prev pointer in DLL makes it possible to move/iterate backwards at the expense of two-times memory usage requirement since each vertex records one additional
pointer.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

9

Operators Implementation in C++ Time Complexity (Worst Case)
get(i) Vertex* get(int i) { // returns the vertex

 Vertex* ptr = head; // we have to start from head
 for (int k = 0; k < i; k++) // advance forward i time(s)
 ptr = ptr->next; // the pointers are pointing to the higher index
 return ptr;
}

𝑂𝑂(𝑁𝑁)

𝑖𝑖 can be as big as index 𝑁𝑁 − 2

insert(i,v) Empty List Vertex* vtx = new Vertex(); // create new vertex vtx from item v
vtx->item = v;
vtx->next = head; // link this new vertex to the (old) head vertex
head = vtx; // the new vertex becomes the new head

𝑂𝑂(1)
Head

In Between Vertex* pre = get(i-1); // traverse to (i-1)-th vertex, O(N)

aft = pre.next // aft cannot be null, think about it
Vertex vtx = new Vertex(); // create new vertex
vtx->item = v;
vtx->next = aft; // link this
pre->next = vtx; // and this

𝑂𝑂(𝑁𝑁)

Need to traverse the list

Tail Vertex* vtx = new Vertex();
vtx->item = v; // create new vertex vtx from item v
tail->next = vtx; // just link this, as tail is the i = (N-1)-th
item
tail = vtx; // now update the tail pointer

𝑂𝑂(1)

remove(i) Head if (head == NULL) return; // avoid crashing when SLL is empty
Vertex* temp = head; // so we can delete it later
head = head->next; // book keeping, update the head pointer
delete temp; // which is the old head

𝑂𝑂(1)

In Between Vertex* pre = get(i-1); // traverse to (i-1)-th vertex, O(N)
Vertex* del = pre->next, aft = del->next;
pre->next = aft; // bypass del
delete del;

𝑂𝑂(𝑁𝑁)

Need to traverse the list

Tail
(SLL)

Vertex* pre = head;
temp = head->next;
while (temp->next != null) // while my neighbour is not the tail
pre = pre->next, temp = temp->next;
pre->next = null; // alternatively: pre = get(N-2), temp = get(N-1)
delete temp; // temp = (old) tail
tail = pre; // update tail pointer

𝑂𝑂(𝑁𝑁)

Need to update the tail pointer from
item 𝑁𝑁 − 1 backwards by one unit to
item 𝑁𝑁 − 2 so that future insertion after
tail remains correct

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

10

Tail
(DLL)

Vertex temp = tail // remember tail item
tail = tail.prev // the key step :O
tail.next = null // remove this dangling reference
delete temp // remove the old tail

𝑂𝑂(1)

Linked List Variants

Properties Stack Queue
Design Type Protected Singly Linked List Protected Singly Linked List
Data Structure Last-In-First-Out First-In-First-Out
Accessibility Peek Head Head

Push Head Tail
Pop Head Head

Time Complexity Peek 𝑂𝑂(1) 𝑂𝑂(1)
Push 𝑂𝑂(1) 𝑂𝑂(1)
Pop 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁) for array implementation

𝑂𝑂(1) for linked list implementation
Application 1. Bracket Matching

2. Postfix Calculator
3. Depth-First-Search graph traversal (implicit)

1. Breadth-First-Search graph traversal

Double-Ended Queue (Deque)

Properties:

1. Protected Doubly Linked List which elements can be searched, added to or removed only from either the head or tail.

Operators Time Complexity
GetHead() 𝑂𝑂(1)
GetTail()
InsertHead()
InsertTail()
RemoveHead()
RemoveTail()

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

11

Time Complexity of ADT Operations

Input Type

Algorithm

Singly Linked List Stack Queue Doubly Linked List Deque

search(v) 𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
peek-front() 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1)
peek-back() 𝑂𝑂(1) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1)
insert(0, v) 𝑂𝑂(1) 𝑂𝑂(1) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(1) 𝑂𝑂(1)
insert(N, v) 𝑂𝑂(1) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1)
insert(i, v),
i ∈[1..N-1]

𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

remove(0) 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1) 𝑂𝑂(1)
remove(N-1) 𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(1) 𝑂𝑂(1)
remove(i),
i ∈[1..N-1]

𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂(𝑁𝑁) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Additional Notes:

1. The above time complexities of algorithms for ADTs (except for DLL) assumes the implementation of using a Singly Linked List.
2. Actual time complexity for certain algorithms for each ADT may differ in C++ STL implementation as the container type used for the ADTs are unlikely to be Singly

Linked List (i.e. may implement the ADTs using container type std::vector or std::deque by default).

C++ ADT STL Implementation

ADT Type Header File Remarks
std::list Container <list> Already a DLL
std::deque Container <deque> Not using DLL implementation
std::stack Container Adaptor <stack> Uses std::deque container type by default

Can be defined with std::list and std::vector
container type

std::queue Container Adaptor <queue> Uses std::deque container type by default
Can be defined with std::list container type

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

12

Chapter 3 Binary Heap
Properties:

1. Binary (Max) Heap: A complete binary tree that maintains the Max Heap property.
2. Complete Binary Trees: Every level in the binary tree, except possibly the last/lowest level, is completely filled, and all vertices in the last level are as far left as possible.
3. Binary Max Heap Property: The parent of each vertex - except the root - contains value greater than the value of that vertex.
4. For a Binary Heap of 𝑁𝑁 elements, the height of its complete binary tree will not be taller than 𝑂𝑂(log𝑁𝑁).
5. Binary Heap is a possible data structure to model an efficient Priority Queue ADT.

Priority Queue

Properties:

1. Each element has a "priority" and an element with higher priority is served before an element with lower priority.
2. Ties are broken with standard First-In First-Out rule as with normal Queue.
3. Array and Linked List implementations will lead to slow enqueue() and dequeue() i.e. 𝑂𝑂(𝑁𝑁) – constantly searching for the max which is 𝑂𝑂(𝑁𝑁)

Operators Functions
enqueue(x) Put a new element (key) x into the PQ (in some order)
dequeue() Return an existing element that has the highest priority (key) in the

PQ and if ties, return the one that is inserted first

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

13

Compact-Based Array

A complete binary tree can be stored efficiently as a compact array 𝐴𝐴 as there is no gap between vertices of a complete binary tree/elements of a compact array. To simplify
the navigation operations below, 1-based array is used. The above diagram displays the index of each vertex as a red label below each vertex. As such, basic binary tree
traversal operations with simple index manipulations with help of bit shift manipulation.

Operator Functions
i>>1 Index 𝑖𝑖 divided by 2.

Obtains parent node.
i<<1 Index 𝑖𝑖 multiplied by 2.

Obtains left node.
(i<<1)+1 Index 𝑖𝑖 multiplied by 2 and added by 1

Obtains right node.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

14

Binary Heaps Operators

Operator Function Time Complexity
insert(v) Insert new item 𝑣𝑣 into the Binary Max Heap at last index 𝑁𝑁 +

1 to maintain a compact array
Fixes the max heap property from insertion point upwards(an
operation known as Shift Up/Bubble Up/Increase Key)

𝑂𝑂(log𝑁𝑁)

ExtractMax() Removes the max item (root) from the Binary Max Heap
Last element will replace the root to maintain a compact
array
Fixes the max heap property from root downwards (an
operation known as Shift Down/Bubble Down/Heapify)

𝑂𝑂(log𝑁𝑁)

create() Insert 𝑁𝑁 integers by calling insert(v) N times 𝑂𝑂(𝑁𝑁 log𝑁𝑁)
Fixes the max heap property from last internal vertex back to
the root

𝑂𝑂(𝑁𝑁)

Derivation:

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐻𝐻 = log2 𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ,𝑉𝑉 = ⌈
𝑁𝑁

2ℎ+1
⌉

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ = 𝑂𝑂(ℎ)
∴ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ = 𝑉𝑉 × 𝑂𝑂(ℎ)

∴ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
= 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑦𝑦 𝑜𝑜𝑜𝑜 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ

= �𝑉𝑉 × 𝑂𝑂(ℎ)
𝐻𝐻

ℎ=0

= 𝑂𝑂(2𝑁𝑁) = 𝑂𝑂(𝑁𝑁)

HeapSort() Sort the heap by calling extractMax() 𝑁𝑁 times 𝑂𝑂 (𝑁𝑁 log𝑁𝑁)

Additional Notes:

1. Maximum number of swaps between heap element = max(left, right) + 1
2. Minimum number of swaps between heap element = 0
3. Maximum number of comparisons between heap element = max(left, right) + number of direct children
4. Minimum number of comparisons between heap element = N – 1

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

15

Chapter 4 Hash Tables

Basic Operators

Operators Functions
search(v) Determine if v exists in the ADT
insert(v) Insert v into the ADT
remove(v) Remove v from the ADT

Direct Addressing Table

Properties:

1. For integer keys that are small [0 𝑡𝑡𝑡𝑡 𝑀𝑀− 1].
2. All Table ADT Operations are 𝑂𝑂(1).
3. An Boolean array of size 𝑀𝑀 can be implemented as follow:

Operators Implementations
search(v) Check if A[v] is true (filled) or false (empty)
insert(v) Set A[v] to be true
remove(v) Set A[v] to be false

4. It is possible to use satellite data (such as Strings) instead of Boolean variables to record existence of keys.

Limitations:

1. Keys must be easily mapped to non-negative integer values.
2. Range of keys must be small or memory usage will be large.
3. Keys must be dense (i.e. not many gaps in the key values) or DAT will contain too many empty cells.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

16

Hashing

Properties:

1. Able to map non-integer keys to integer keys.
2. Able to map large integers to smaller integers.
3. Influence the density or load factor α = 𝑁𝑁

𝑀𝑀
 of hash table where 𝑁𝑁 is the number of keys and 𝑀𝑀 is the size of Hash Table.

4. A hash function of h(v)=v%M where 𝑀𝑀 is the size of the hash table can be implemented to hash operators as follow:

Operators Implementations
search(v) Check if A[h(v)] != -1 (where -1 represents empty

cell)
insert(v) Set A[h(v)] = v
remove(v) Set A[v] = -1

5. It is also possible to use satellite data, which has the following implementation for hash operators:

Operators Implementations
search(v) Return A[h(v)] which is a pair<v, satellite-

data>, though possibly empty
insert(v) Set A[h(v)] = pair<v, satellite-data>
remove(v) Set A[v] = empty pair

Hash Function

Properties:

1. A good hash function has the following desirable properties:
a. Fast to compute i.e. 𝑂𝑂(1).
b. Uses as minimum Hash Table of size 𝑀𝑀 as possible.
c. Scatter the keys into different base addresses as possible.
d. Experience minimum collisions as possible.

2. Perfect hash function has the following properties:
a. One-to-one mapping between keys and hash values i.e. no collisions at all.
b. Table size is the same as the same as the number of keywords supplied.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

17

3. Best implementation for hashing of integer is h(v)=v%M where v is the item to be mapped and M is the size of Hash Table (number of slots). M should also be a prime
number to reduce the number of collisions.

4. Best implementation for hashing of string is as follows:

int hash_function(string v) { // assumption 1: v uses ['A'..'Z'] only
 int sum = 0; // assumption 2: v is a short string
 for (auto &c : v) // for each character c in v
 sum = ((sum*26)%M + (c-'A'+1))%M; // M is table size
 return sum;
}

Additional Notes:

1. Hashing of floating-point variable types should be avoided due to the precision of floating-point variables, which may result in different keys being generated for the
same value.

2. Size of Hash Table, 𝑀𝑀, should be a prime number to reduce the number of common factors and common multiples of 𝑀𝑀, thereby reducing collisions.
3. In C++11, it is only possible to hash integer, floating-point and string type variables. Declarations like unordered_set<pair<int, int>> are undefined.

Collision Resolution

Open Addressing

Outline: All hashed keys are located in a single array. The hash code of a key gives its base address. Collision is resolved by checking/probing multiple alternative addresses
(hence the name open) in the table based on a certain rule.

Desirable Open Addressing Properties:

1. Always find an empty slot if it exists.
2. Minimize clustering.
3. Give different probe sequences when 2 different keys collide.
4. Fast time-complexity of 𝑂𝑂(1).

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

18

Techniques:

Techniques Linear Probing Quadratic Probing Double Hashing
Probing Sequence/Index (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 1)%𝑀𝑀 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)%𝑀𝑀 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)%𝑀𝑀

𝑀𝑀 = 𝐻𝐻𝐻𝐻. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑎𝑎𝑎𝑎ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝑘𝑘𝑘𝑘𝑘𝑘%𝐻𝐻𝐻𝐻. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑘𝑘𝑘𝑘𝑘𝑘%𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Operation Implementation
insert(v) 1. Start from primary hash value key, 𝑘𝑘 = ℎ(𝑣𝑣).

2. If 𝑘𝑘 is empty, map 𝑣𝑣 to 𝑘𝑘.
3. Otherwise, move forward 𝑖𝑖 steps where 𝑖𝑖 is the probing index until an empty

cell/deleted is encountered and map 𝑣𝑣 to 𝑘𝑘 + 𝑖𝑖.
search(v) 1. Start from primary hash value key, 𝑘𝑘 = ℎ(𝑣𝑣).

2. If 𝑘𝑘 is 𝑣𝑣, then 𝑣𝑣 has been found.
3. Otherwise, move forward 𝑖𝑖 steps where 𝑖𝑖 is the probing index and check if

𝑘𝑘 + 𝑖𝑖 is 𝑣𝑣.
4. If an empty cell/deleted cell is encountered, then v is not in the Hash Table.

remove(v) 1. Start from primary hash value key 𝑘𝑘 = ℎ(𝑣𝑣).
2. If 𝑘𝑘 is 𝑣𝑣, set 𝑘𝑘 to DEL.
3. Otherwise, move forward 𝑖𝑖 steps where 𝑖𝑖 is the probing index and set 𝑘𝑘 +

𝑖𝑖 to DEL if 𝑘𝑘 + 𝑖𝑖 is 𝑣𝑣.

Note: DEL is a special symbol to indicate that the cell can be by-passed if necessary
by future search(v) operation, but can be overwritten by future insert(V)
operation. This deletion strategy is known as Lazy Deletion.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

19

Linear Probing Technique:

1. Linear Probing collision resolution technique involves scanning forwards one index at a time for the next empty/deleted slot (wrapping around when necessary)
whenever there is a collision.

2. Linear Probing can create large primary clusters (a cluster is a collection of consecutive occupied slots; a cluster that covers the base address of a key is called the
primary cluster of the key) that will increase the running time of search(v)/insert(v)/remove(v) operations beyond O(1).

Quadratic Probing Technique:

1. Quadratic Probing collision resolution technique involves scanning forward index that increases quadratically for the next empty/deleted slot (wrapping around if
necessary) whenever there is a collision.

2. Quadratic Probing can create secondary clusters (clusters that are formed along the path of probing as a result of using the same pattern in probing by all keys). If
two distinct keys have the same base address, their Quadratic Probing sequences are going to be the same indexes

3. Probing might also be in an endless cycle unless α < 0.5 and 𝑀𝑀 is a prime number:
Proof by Contradiction:

Let x and y be 2 quadratic probing steps where x ≠ y and x and y yield the same address modulo M
h(v) + x * x = h(v) + y * y mod M;
x * x = y * y mod M // strike out h(v) from both sides)
x * x – y * y = 0 mod M // move y * y to LHS
(x – y) * (x+y) = 0 mod M // rearrange the formula
Now, either (x-y) or (x+y) has to equal to 0;
Since x != y, then (x-y) cannot be 0.
As 0 <= x < y <= (M/2) and M is a prime > 3 (an odd integer), then (x+y) also cannot be 0 mod M.

Contradiction! Hence for the first M/2 quadratic probing steps cannot yield he same address modulo M (if we set M to be a prime number greater than 3).
4. However, secondary clustering in Quadratic Probing is not as bad as primary clustering in Linear Probing as a good hash function should theoretically disperse the

keys into different base addresses ∈ [0. .𝑀𝑀 − 1] in the first place.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

20

Double Hashing Technique:

1. Double Hashing collision resolution technique involves scanning forward index that base on a second hash function, ℎ2(𝑣𝑣) for the next empty/deleted slot (wrapping
around if necessary) whenever there is a collision.

2. Usually (for Integer keys), ℎ(2𝑣𝑣) = 𝑀𝑀′ − 𝑣𝑣%𝑀𝑀′ where 𝑀𝑀′ is a smaller prime than 𝑀𝑀. This makes ℎ2(𝑣𝑣) ∈ [1. .𝑀𝑀′], which is diverse enough to avoid secondary
clustering.

Closed Addressing

Outline: Hash Table looks like an Adjacency List (a graph data structure). The hash code of a key gives its fixed/closed base address. Collision is resolved by appending the
collided keys inside a (Doubly) Linked List identified by the base address.

Separate Chaining Technique:

1. Using 𝑀𝑀 copies of auxiliary data structures (usually Doubly Linked Lists) if two keys 𝑎𝑎 and 𝑏𝑏 both have the same hash value 𝑖𝑖, both will be appended to the (front/back)
of Doubly Linked List 𝑖𝑖.

2. The load factor 𝛼𝛼 = 𝑁𝑁
𝑀𝑀

 describes the average length of the 𝑀𝑀 lists and it will determine the performance of search(v) due to the need to explore 𝛼𝛼 elements on
average i.e. search(v) has a time-complexity of 𝑂𝑂(1 + 𝛼𝛼).

3. remove(v) will also have a time-complexity of 𝑂𝑂(1 + 𝛼𝛼) since it requires search(v) .
4. insert(v) has a time complexity of 𝑂𝑂(1).
5. If bound 𝛼𝛼 to a small constant, all search(v)/insert(v)/remove(v) operations using Separate Chaining will be 𝑂𝑂(1).

Additional Notes:

1. Open Addressing collision resolution has poor performance when there are a lot of deletions involved as compared to Closed Addressing collision resolution due to
the need to travel through the DEL spaces as well.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

21

Rehashing

Function: The performance of Hash Table degrades when the load factor 𝛼𝛼 gets higher. For (standard) Quadratic Probing collision resolution technique, insertions might fail
when the Hash Table 𝛼𝛼 > 0.5. Rehashing resolves such performance issue of the Hash table.

Algorithm Outline:

1. Build another Hash Table about twice as big with a new hash function.
2. Go through all keys in the original Hash Table, recompute the new hash values, and re-insert the keys (with their satellite-data) into the new Hash Table.
3. Delete the original Hash Table.
4. A rule of thumb is to rehash when 𝛼𝛼 ≥ 0.5 if using Open Addressing and when 𝛼𝛼 > 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 1.0 if using Separate Chaining.

Chapter 5: Binary Search Tree

Properties:

1. Binary tree where each vertex has only up to 2 children.
2. All vertices in the left subtree of a vertex must hold values smaller than its own while all vertices in the right subtree of a vertex must hold values larger than its own.
3. There can only be one root vertex in a BST.
4. Leaf vertex does not have any child and there can be more than one leaf vertex.
5. Vertices that are neither leaf nor root are called internal vertices.
6. For 𝑁𝑁 elements in a BST, the lower bound height ℎ > log𝑁𝑁 if 𝑁𝑁 elements can be inserted in perfect order so that the BST is perfectly balanced.

∴ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 = ⌊log2 𝑁𝑁⌋

N ≤ 1 + 2 + 4 + ... + 2h
N ≤ 20 + 21 + 22 + … + 2h
N < 2h+1 (sum of geometric progression)
log2 N < log2 2h+1
log2 N < (h+1) * log2 2 (log2 2 is 1)
h > (log2 N)-1 (algebraic manipulation)
h > log2 N

7. For 𝑁𝑁 elements in a BST, the upper bound height ℎ < 𝑁𝑁 if 𝑁𝑁 elements are inserted in ascending/descending order to get skewed right/left BST.
∴ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 = 𝑁𝑁 − 1

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

22

Comparisons with Vector/Arrays

 Unsorted Arrays/Vectors Sorted Arrays/Vectors Unbalanced BST Balanced BST
search(v) 𝑂𝑂(𝑁𝑁)

There might be the need to explore all
𝑁𝑁 elements if 𝑣𝑣 does not actually
exist.

𝑂𝑂(log𝑁𝑁)

Implemented using Binary Search
method.

𝑂𝑂(𝑁𝑁)

Height can be 𝑁𝑁 − 1

𝑂𝑂(log𝑁𝑁)

insert(v) 𝑂𝑂(1)

Implemented by putting 𝑣𝑣 at the back
of the array.

𝑂𝑂(𝑁𝑁)

Implement using insertion-sort like
strategy to ensure that the array
remains sorted.

remove(v) 𝑂𝑂(𝑁𝑁)

Implemented by first searching for 𝑣𝑣
(which is an 𝑂𝑂(𝑁𝑁) operation) and
later closing the resulting gap after
deletion (which is also an 𝑂𝑂(𝑁𝑁)
operation).

𝑂𝑂(𝑁𝑁)

Closing the resulting gap after
deletion is an 𝑂𝑂(𝑁𝑁) operation.

Data Structure Types

Static Data Structure are data structures that are only efficient if there is rarely or no update operations (such as insert and remove operations).

Dynamic Data Structure are data structures that are efficient even if there are many update operations. BST (especially Balanced BST) are in this category.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

23

Query Operations

These operations do not alter the BST structure.

Operation Implementation Time Complexity
search(v) 1. Set the current vertex to be the root

2. Check if the current vertex is smaller/equal/larger than integer 𝑣𝑣
3. Traverse to the right subtree if current vertex is smaller than 𝑣𝑣
4. Traverse to the left subtree if current vertex is smaller than 𝑣𝑣
5. Repeat steps 1 to 4 until 𝑣𝑣 is found

𝑂𝑂(𝐻𝐻)
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

FindMin()
FindMax()

1. Set the current vertex to be the root
2. Keep traversing to the left subtree to obtain FindMin()
3. Keep traversing to the right subtree to obtain FindMax()

successor(v) 1. If 𝑣𝑣 has a right subtree, the minimum integer in the right subtree of 𝑣𝑣 must be the successor of 𝑣𝑣
2. If 𝑣𝑣 does not have a right subtree, traverse the ancestors until the first vertex 𝑤𝑤 that is greater

than 𝑣𝑣 (Note: 𝑣𝑣 should be the maximum element in the left subtree of 𝑤𝑤)
3. If 𝑣𝑣 is the maximum integer in the BST, 𝑣𝑣 does not have any successor

predecessor(v) 1. If 𝑣𝑣 has a left subtree, the maximum integer in the left subtree of 𝑣𝑣 must be the predecessor of 𝑣𝑣
2. If 𝑣𝑣 does not have a left subtree, traverse the ancestors until the first vertex 𝑤𝑤 that is smaller

than 𝑣𝑣 (Note: 𝑣𝑣 should be the minimum element in the right subtree of 𝑤𝑤)
3. If 𝑣𝑣 is the minimum integer in the BST, 𝑣𝑣 does not have any predecessor

In-order Traversal

Order: A B C D E F G H I

1. Check if the current node is empty/null
2. Traverse the left subtree by recursively calling the in-order function
3. Display the data part of the root (or current node)
4. Traverse the right subtree by recursively calling the in-order function

TLDR: left – root – right; this operation obtains a list of sorted integers inside the BST.

𝑂𝑂(𝑁𝑁)

Pre-order Traversal

Order: F B A D C E G I H

1. Check if the current node is empty/null
2. Display the data part of the root (or current node)
3. Traverse the left subtree by recursively calling the pre-order function
4. Traverse the right subtree by recursively calling the pre-order function

TLDR: root – left - right

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

24

Post-order Traversal

Order: A C E D B H I G F

1. Check if the current node is empty/null.
2. Traverse the left subtree by recursively calling the post-order function.
3. Traverse the right subtree by recursively calling the post-order function.
4. Display the data part of the root (or current node)

TLDR: left – right – root

Update Operations

These operations are likely to alter the BST structure.

Operation Implementation Time Complexity
insert(v) 1. Set the current vertex to be the root

2. Check if the current vertex is smaller/equal/larger than integer 𝑣𝑣
3. Traverse to the right subtree if current vertex is smaller than 𝑣𝑣
4. Traverse to the left subtree if current vertex is smaller than 𝑣𝑣
5. Create new vertex in insertion point and place v there

𝑂𝑂(𝐻𝐻)
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

remove(v) 1. Set the current vertex to be the root
2. Check if the current vertex is smaller/equal/larger than integer 𝑣𝑣
3. Traverse to the right subtree if current vertex is smaller than 𝑣𝑣
4. Traverse to the left subtree if current vertex is smaller than 𝑣𝑣
5. If 𝑣𝑣 found is a leaf vertex, just simply remove the vertex (𝑂𝑂(𝐻𝐻 + 1))
6. If 𝑣𝑣 found is an internal vertex with exactly one child, remove the vertex and connect the child

with the vertex’s parent (𝑂𝑂(𝐻𝐻 + 1))
7. If 𝑣𝑣 found is an internal vertex with exactly two children, replace the vertex with its successor

and delete the duplicated successor in its right subtree (𝑂𝑂(𝐻𝐻 + 𝐻𝐻))

Additional Notes:

1. Number of different BST = 1
𝑛𝑛
�2𝑛𝑛𝑛𝑛 �

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

25

AVL Tree

Properties:

1. AVL Tree is an implementation of Balanced BST which height is consistently less than 2 × log𝑁𝑁
2. Height(v) of each vertex (where height(v) is the number of edges on the path from vertex v down to its deepest leaf) is saved in each vertex so that each vertex’s

height can be accessed in O(1).
3. Height(v) can be computed by ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡(𝑣𝑣) = max(𝑣𝑣. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡, 𝑣𝑣. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) + 1 where 𝑣𝑣. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 and 𝑣𝑣. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 are the height of left and right

children respectively.
4. Height(v) is only required to be computed after insert and remove operation as only the height(v) of vertices along insertion and removal path may be affected.

This means that only ℎ = 2 × log𝑁𝑁 vertices may change its height attribute:
Let Nh be the minimum number of vertices in a height-balanced AVL Tree of height h.

For any AVL Tree of N vertices, N ≥ Nh – (1)

Nh = 1 + Nh-1 + Nh-2 (formula for minimum-size AVL tree of height h)
Nh > 1 + 2*Nh-2 (as Nh-1 > Nh-2)
Nh > 2*Nh-2 (obviously)
Nh > 4*Nh-4 (recursive)
Nh > 8*Nh-6 (another recursive step)
... (we can only do this h/2 times, assuming initial h is even)
Nh > 2h/2*N0 (we reach base case)
Nh > 2h/2 (as N0 = 1) – (2)

From (1) and (2):
N ≥ Nh > 2h/2
N > 2h/2
log2(N) > log2(2h/2) (log2 on both sides)
log2(N) > h/2 (formula simplification)
2 * log2(N) > h or h < 2 * log2(N)
h = O(log(N)) (the final conclusion)

5. AVL Tree Invariant states that vertex v is said to be height balance if |𝑣𝑣. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 − 𝑣𝑣. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡| ≤ 1.
6. To quickly detect if a vertex v is height balanced or not, a balance factor 𝑏𝑏𝑏𝑏(𝑣𝑣) = 𝑣𝑣. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 − 𝑣𝑣. 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡.ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 can be used.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

26

Tree Rotation

Properties:

1. RotateRight(T) can only be called if T has a left child, while RotateLeft(T) can only be called if T has a right child.
2. Note that Tree Rotation preserves the BST property i.e. Before rotation, 𝑃𝑃 ≤ 𝐵𝐵 ≤ 𝑄𝑄. After rotation, notice that subtree rooted at 𝐵𝐵 (if it exists) changes parent,

but 𝑃𝑃 ≤ 𝐵𝐵 ≤ 𝑄𝑄 does not change.
3. There are only 4 possible imbalance cases as shown below:

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

27

AVL Tree Operations

Operation Implementation Complexity
insert(v) 1. Insert 𝑣𝑣 as in normal BST

2. Traverse up the AVL Tree from the insertion point back to the root
3. At every step, update the height and balance factor of the affected vertices
4. Stop at the first vertex that is out of balance
5. Use one of the four tree rotation cases to rebalance it

𝑂𝑂(log𝑁𝑁)

remove(v) 1. Remove 𝑣𝑣 as in normal BST
2. Traverse up the AVL Tree from the deletion point back to the root
3. At every step, update the height and balance factor of the affected vertices
4. For every vertex that is out-of-balance, use one of the four tree rotation cases rebalance

(Note: This triggers not more than 𝑂𝑂(log𝑁𝑁) times)

Additional Notes:

1. rank(V) and select(K) operations can be implemented by storing the total number of vertices in each subtree, then recursively process the each subtrees until
the conditions (where vertex < V in rank(V) and total vertices < K in rank(K)) are no longer satisfied. Pseudocodes for the two implementations are as follow:

int rank(node, V) {
 if (node.key == V) return node.left.size + 1;
 else if (node.key > V) return rank(node.left, V)
 else return node.left.size + 1 + rank(node.right, v);
}

int select(node, K) {
 int q = node.left.size;

 if (q + 1 == K) return node.key;
 else if (q + 1 > K) return select(node.left, k);
 else return select(node.right, k – q - 1);
}

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

28

Chapter 6: Graphs
Terminology Definition
Graph A graph is made up of vertices/nodes and edges/lines that connect those vertices.
Undirected/Birectional
Graph

A graph that has no distinction between the two vertices associated with each edge or its edges may be directed from one vertex to another but
not necessarily in the other direction

Weight Graph A graph that has been assigned a weight to each edge, which represent numerical values associated with that connection.
Unweighted Graph A graph where all edges have unit weight 1 or all edges have the same constant weight.
Simple Graph A graph that has no self-loop edges (an edge that connects a vertex with itself) and no multiple or parallel edges (edges between the same pair

of vertices) i.e. a graph that has up to only one edge between a pair of distinct vertices.
Incident Edge (𝑢𝑢, 𝑣𝑣) is said to be incident with its two end-point vertices 𝑢𝑢 and 𝑣𝑣 if it 𝑢𝑢 and 𝑣𝑣 are adjacent i.e. 𝑢𝑢 and 𝑣𝑣 are connected by edge (𝑢𝑢, 𝑣𝑣).
Adjacent Undirected Graph: Two vertices are called adjacent (or neighbour) if they are incident with a common edge i.e. a single edge connects the 2

vertices.

Directed Graph: Vertex 𝑢𝑢 is adjacent to vertex 𝑣𝑣 if and only if they are connected by an edge and the direction of the edge is from 𝑢𝑢 to 𝑣𝑣 i.e. 𝑣𝑣 is
not adjacent to 𝑢𝑢.

Two edges are called adjacent if they are incident with a common vertex i.e. both edges share a common vertex.

Degree Undirected Graph: Degree of a vertex in an undirected graph is the number of edges incident with the vertex.

Directed Graph: Further classified into in-degree and out-degree. In-degree refers to the number edges coming into a vertex while out-degree
refers to the number of edges going out of a vertex.

Isolated vertex A vertex with a degree of 0 i.e. a vertex with no edges.
Subgraph A subgraph of a graph is a smaller graph that contains subset of vertices and edges of the main graph.
Path In an undirected graph, a path is a sequence of vertices {𝑣𝑣0, 𝑣𝑣1, . . . , 𝑣𝑣𝑛𝑛−1, 𝑣𝑣𝑛𝑛} such that there’s an edge between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1∀𝑖𝑖 ∈ [0. .𝑛𝑛 − 1]

along the path.
Simple Path A path that contains no repeated vertex.
Cycle A cycle is a path that starts and ends with the same vertex.
Acyclic Graph An acyclic graph is a graph that contains no cycle.
Connected An undirected graph is called connected if there is a path between every pair of distinct vertices.
Connected Component An undirected graph 𝐶𝐶 is called a connected component of the undirected graph 𝐺𝐺 if:

1. 𝐶𝐶 is a subgraph of 𝐺𝐺
2. 𝐶𝐶 is connected
3. No connected subgraph of 𝐺𝐺 has C as a subgraph and contains vertices or edges that are not in 𝐶𝐶 (i.e. 𝐶𝐶 is the maximal subgraph that

satisfies the other two criteria)

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

29

Trees

Properties:

1. Tree is a connected graph with 𝑉𝑉 vertices and 𝐸𝐸 = 𝑉𝑉 − 1 edges, acyclic, and has one unique path between any pair of vertices.
2. Usually a Tree is defined on undirected graph.
3. An undirected Tree contains trivial cycles but it does not contain non-trivial cycle.
4. A directed Tree is acyclic.
5. As a Tree only have 𝑉𝑉 − 1 edges, it is usually considered a sparse graph.
6. Tree with one of its vertex designated as root vertex is called a rooted Tree.

Terms Vertices Results

Parents 0 None
1 0
2 1
4 3

Children 0 {1, 7}
1 {2, 3, 6}
7 {8, 9}

Ancestors 4 {3, 1, 0}
8 {7, 0}

Descendants 1 {2, 3, 4, 5, 6}
7 {8, 9}

Subtree 1 {2, 3, 4, 5, 6}
Level Level 0 0

Level 1 {1, 7}
Level 2 {2, 3, 6, 8, 9}
Level 3 {4, 5}

Max Level - 3

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

30

Other Special Graphs

Graph Properties Visualization
Complete 1. A graph where there is an edge between any pair of vertices.

2. Maximum number of edges is 𝑉𝑉(𝑉𝑉−1)
2

 or 𝐶𝐶2𝑉𝑉 i.e. 𝐸𝐸 = 𝑂𝑂(𝑉𝑉2)
3. Can be denoted with 𝐾𝐾𝑉𝑉 .
4. Most dense simple graph.

Bipartite 1. An undirected graph with 𝑉𝑉 vertices that can be partitioned into

two disjoint set of vertices of size 𝑚𝑚 and n where 𝑉𝑉 = 𝑚𝑚 + 𝑛𝑛.
2. No edge between members of the same set.
3. Free from odd-length cycle.
4. Complete Bipartite Graph, i.e. all 𝑚𝑚 vertices from one disjoint set

are connected to all 𝑛𝑛 vertices from the other disjoint set.
5. When 𝑚𝑚 = 𝑛𝑛 = 𝑉𝑉

2
, such Complete Bipartite Graphs have 𝐸𝐸 =

𝑂𝑂(𝑉𝑉2).

∴ 𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑉𝑉2

4
𝑖𝑖𝑖𝑖 𝑉𝑉 𝑖𝑖𝑖𝑖 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒

𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑉𝑉2 − 1

4
𝑖𝑖𝑖𝑖 𝑉𝑉 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

31

Directed Acyclic 1. A directed graph that has no cycle.
2. The maximum number of edges a Directed Acyclic Graph can

have is 𝑣𝑣(𝑣𝑣−1)
2

. Adding any more edges will form bidirectional
edges.

Additional Notes:

1. For a general undirected connected simple graph of 𝑉𝑉 vertices, the minimum number of edges is 𝑉𝑉 − 1 (a tree) and the maximum number of edges is 𝑉𝑉(𝑉𝑉−1)
2

 or 𝐶𝐶2𝑉𝑉
(a complete graph).

2. For a general directed graph, the maximum number of edges is 2𝐶𝐶2𝑉𝑉 or 𝑃𝑃2𝑉𝑉.

Graph Data Structures

Data Structure Implementation Space Complexity
Adjacency Matrix Adjacency Matrix (AM) is a square matrix where the entry AM[i][j] shows the edge's weight from vertex

i to vertex j.

For unweighted graphs, set a 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 = 1 for all edge weights.

An 'x' means that that vertex does not exist (deleted).

𝑂𝑂(𝑉𝑉2)

Adjacency List Adjacency List (AL) is an array of 𝑉𝑉 lists, one for each vertex (usually in increasing vertex number) where for
each vertex i, AL[i] stores the list of i's neighbours.

For weighted graphs, store pairs of (neighbour vertex number, weight of this edge) instead using Vector of
Vector pairs: vector<vector<pair<int neighborVertex,int edge>>> AL;

𝑂𝑂(𝑉𝑉 + 𝐸𝐸)

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

32

Reason:
1. Pair is used due to the need to store pairs of information for each edge: (neighbor vertex number,

edge weight) where weight can be set to 0 or unused for unweighted graph.
2. Vector of pairs is used due to vector's auto-resize feature. If there are 𝑘𝑘 neighbours of a vertex, just

add 𝑘𝑘 times to an initially empty Vector of airs of this vertex (this Vector can be replaced with
Linked List).

3. Vector of Vectors of Pairs is used for Vector's indexing feature, i.e. to enumerate neighbours of
vertex u, use AL[u] to access the correct Vector of Pairs.

Edge List Edge List (EL) is a collection of edges with both connecting vertices and their weights. Usually, these edges
are sorted by increasing weight.

Can be implemented with a Vector of triples: vector<tuple<int vertexU, int vertexV, int
weight>> EL;

𝑂𝑂(𝐸𝐸)

Operations

Operation Adjacency Matrix Adjacency List Edge List
CountV() Number of rows Number of rows Loop through the list and sum the number of

unique vertices
CountE() Loop through all the matrix and report

AM[u][j] that is not zero
Sum the length of all 𝑉𝑉 lists and divide the
final answer by 2

Number of rows

EnumNeighbours() Loop through all columns of AM[u][j] ∀𝑗𝑗 ∈
 [0. .𝑉𝑉− 1] and report AM[u][j] that is not
zero

Scan through AL[u] Loop through the list and scan through the
entry that contains u

CheckEdge(u,v) Check if AM[u][v] is non zero Check whether AL[u] contains vertex 𝑉𝑉 or
not

Check if EL contains (𝑢𝑢, 𝑣𝑣)

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

33

Depth-First-Search

Algorithm Outline:

1. DFS starts from a distinguished source vertex 𝑠𝑠 and uses recursion (an implicit stack) to order the visitation sequence as deep as possible before backtracking.
2. If DFS is at a vertex 𝑢𝑢 and it has 𝑋𝑋 neighbours, it will pick the first neighbour 𝑣𝑣1 (usually the vertex with the lowest vertex number), recursively explore all reachable

vertices from vertex 𝑣𝑣1, and eventually backtrack to vertex 𝑢𝑢. DFS will then do the same for the other neighbours until it finishes exploring the last neighbour 𝑣𝑣𝑋𝑋 and
its reachable vertices.

3. DFS uses another array p[u] of size 𝑉𝑉 vertices to remember the parent/predecessor/previous of each vertex 𝑢𝑢 along the DFS traversal path. The predecessor of the
source vertex, i.e. p[s] is set to −1 to say that the source vertex has no predecessor (as the lowest vertex number is vertex 0).

4. The sequence of vertices from a vertex 𝑢𝑢 that is reachable from the source vertex 𝑠𝑠 back to 𝑠𝑠 forms the DFS spanning tree.
5. If the graph is cyclic, the previous 'try-all' strategy may lead DFS to run in cycle, so the basic form of DFS uses a Boolean array status[u] of size 𝑉𝑉 vertices to

distinguish between two states: visited and unvisited vertices. Only if vertex 𝑢𝑢 is still unvisited, then DFS can visit vertex 𝑢𝑢. When DFS runs out of option, it backtrack
to previous vertex (p[u]) as the recursion unwinds.

Properties:

1. Time complexity is 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) because:
a. Each vertex is only visited once due to the fact that DFS will only recursively explore a vertex 𝑢𝑢 if status[u] = unvisited i.e. an 𝑂𝑂(𝑉𝑉) operation.
b. Each time a vertex is visited, all its 𝑘𝑘 neighbours are explored and therefore after all vertices are visited and all 𝐸𝐸 edges are examined i.e. an 𝑂𝑂(𝐸𝐸) operation

as the total number of neighbours of each vertex equals to 𝐸𝐸.
2. To obtain an 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) time complexity, an adjacency list graph data structure should be used.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

34

Breadth-First-Search

Algorithm Outline:

1. BFS starts from a source vertex 𝑠𝑠 but it uses a queue to order the visitation sequence as breadth as possible before going deeper.
2. If BFS is at a vertex 𝑢𝑢 and it has 𝑋𝑋 neighbours, it will explore all the 𝑋𝑋 neighbours. BFS will then do the same for each of the 𝑋𝑋 neighbours until it finishes exploring

the last reachable vertex.
3. BFS uses another array p[u] of size 𝑉𝑉 vertices to remember the parent/predecessor/previous of each vertex 𝑢𝑢 along the BFS traversal path. The predecessor of the

source vertex, i.e. p[s] is set to −1 to say that the source vertex has no predecessor (as the lowest vertex number is vertex 0).
4. The sequence of vertices from a vertex 𝑢𝑢 that is reachable from the source vertex 𝑠𝑠 back to 𝑠𝑠 forms the BFS spanning tree, which is equal to its SSSP spanning tree.
5. If the graph is cyclic, the previous 'try-all' strategy may lead BFS to run in cycle, so the basic form of BFS uses a Boolean array status[u] of size 𝑉𝑉 vertices to

distinguish between two states: visited and unvisited vertices. Only if vertex 𝑢𝑢 is still unvisited, then BFS can visit vertex 𝑢𝑢.

Properties:

1. Time complexity is 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) because:
a. Each vertex is only visited once as it can only enter the queue once i.e. an 𝑂𝑂(𝑉𝑉) operation.
b. Each time a vertex is dequeued from the queue, all its 𝑘𝑘 neighbours are explored and therefore all vertices are visited and all 𝐸𝐸 edges are examined i.e. an

𝑂𝑂(𝐸𝐸) operation as the total number of neighbours of each vertex equals to 𝐸𝐸.
2. To obtain an 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) time complexity, an adjacency list graph data structure should be used.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

35

DFS/BFS Applications

Application Logic Implementation
Detecting Cycle The presence of at least one back edge shows that the

traversed graph (component) is cyclic while its absence shows
that at least the component connected to the source vertex
of the traversed graph is acyclic.

Modify array status[u] to record three different states:
1. Unvisited: DFS has not reach vertex 𝑢𝑢 before
2. Explored: DFS has visited vertex 𝑢𝑢, but at least one neighbour of vertex

𝑢𝑢 has not been visited yet (DFS will go depth-first to that neighbour first)
3. Visited: all neighbours of vertex 𝑢𝑢 have also been visited and DFS is

about to backtrack from vertex 𝑢𝑢 to vertex p[u].
Print Traversal Path Call DFS or BFS from source vertex to store the

parent/predecessor/previous vertex of each vertex in array p
and then call a function backtrack which takes in the array p
and vertex of interest to print the traversal path from the
source vertex to the vertex of interest.

Backtrack function can take the recursive form as follow:

void backtrack(vector<int> &p, int t) {
 if (p[t] == -1) // if p[t] is source vertex
 return 0; // break recursion
 else {
 backtrack(p, p[t]); // run backtrack on
parent node
 cout << t << " "; // print current node
 }
}

Do note that a recursive implementation will result in a path from source vertex
to vertex of interest. Eg. for a graph with path 1 → 2 → 3, calling DFS(1) and
backtrack(3) will print out 1 2 3.

Reachability Test

Call DFS or BFS from source vertex to store the
parent/predecessor/previous vertex of each vertex in array p
and then check status of vertex of interest in the status
array.

If status of vertex of interest is visited, vertex of interest can
be reached from source vertex.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

36

Application Logic Implementation
Connected Components Enumerate all vertices that are reachable from a source

vertex in an undirected graph by calling DFS or BFS and
enumerate all vertices that have visited status. This will form
the first group of connected component.
Repeat the process for vertices with unvested status to find
the number of connected components in the graph.

Note: This is an 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) and not 𝑂𝑂(𝑉𝑉2 + 𝑉𝑉𝑉𝑉) complexity as
the 𝑉𝑉 and 𝐸𝐸 is used loosely i.e. 𝑉𝑉 and 𝐸𝐸 are for each
individual connected component.

void connected(vector<int> &status, vector<int> &vertex) {
 int CC = 0;

 for (auto &i : vertex)
 if (status[i] == 0) { // Using 0 as unvisited
 CC++;
 DFS(i); // Call DFS for unvisited vertex
 }
 cout << CC << endl;
}

Topological Sort Topological sort of a DAG is a linear ordering of the DAG's
vertices in which each vertex comes before all vertices to
which it has outbound edges.

Every DAG has at least one but possibly more topological
sorts/ordering.

The DFS version requires just one additional line compared to the normal DFS
and is basically the post-order traversal of the graph.

The BFS version is based on the idea of vertices without incoming edge and is
also called as Kahn's algorithm.

Other Applications

Application Logic Implementation
Connected Components
(Flood Fill)

Given a 2D array where cells containing the same element are
considered connected graph, a recursive flood fill algorithm
can be used to determine the number of connected
component.

The recursive flood fill algorithm check for each cell’s
horizontal and vertical neighbouring cells.

It terminates if the cell index exceeds the size of the array, or
if the cell contains a different element. Otherwise, it fills the
current cell with a different character before running the
algorithm on its neighbours.

int r[] = {0, 0, 1, -1};
int c[] = {1, -1, 0, 0};
void floodFill(int row, int col) {
 // Cell exceeds the range of 2D array
 if (row < 0 || row >= R || col < 0 || col >= C)return;
 // Cell does not contain the same character
 else if (array[row][col] == '#')return;
 else {
 // Change current cell to different character
 array[row][col] = '#';
 // Check for cells vertically and horizontally
 for (int k = 0; k < 4; k++)
 floodFill(row + r[k], col + c[k]);
 }
}

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

37

Chapter 7: Single Source Shortest Path
Algorithm Outline: To find the shortest paths weights from a particular single-source vertex to all other vertices in a directed weighted graph (if such paths exist) denoted by
𝛿𝛿(𝑠𝑠,𝑢𝑢) where 𝑠𝑠 is the source vertex and 𝑢𝑢 is the destination vertex:

1. Input consists of:
a. A directed graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) where 𝑉𝑉 is the vertex and 𝐸𝐸 is the edge
b. A source vertex 𝑠𝑠 ∈ 𝑉𝑉

2. Output consists of:
a. An array/vector 𝐷𝐷 of size 𝑉𝑉 to store the distance:

i. Initially D[u]= 0 if u = 𝑠𝑠; otherwise D[u]= ∞ where ∞ can be an extremely large value (eg. INT_MAX) or a placeholder value (eg. -1, if no negative
weights).

ii. D[u] decreases as shorter paths are found
iii. D[u] ≥ 𝛿𝛿(𝑠𝑠,𝑢𝑢) throughout the execution of SSSP algorithm
iv. D[u] = 𝛿𝛿(𝑠𝑠,𝑢𝑢) at the end of SSSP algorithm

b. An array/vector 𝑝𝑝 of size 𝑉𝑉 to store the parent/predecessor/previous vertex
i. p[u] = the predecessor on best path from source 𝑠𝑠 to 𝑢𝑢

ii. p[u] = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
3. The main operation for all SSP algorithm is the relax(u, v, weight(u, v)) operation, which essentially traverses down an edge and updating the tentative

shortest distance, as shown in pseudo code below:

relax(u, v, weight (u, v)
 if D[v] > D[u] + weight(u, v) // if shortest path can be shortened

 D[v] = D[u] + weight(u, v) // 'relax' this edge; update shortest path
 p[v] = u // update the predecessor

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

38

Properties:

1. Shortest Paths are Simple Paths if 𝐺𝐺(𝑉𝑉,𝐸𝐸) has no negative weight cycle:
Proof by Contradiction:

1. Suppose the shortest path 𝑝𝑝 is not a simple path
2. Then 𝑝𝑝 must contains one (or more) cycle(s) (by definition of non-simple path)
3. Suppose there is a cycle 𝑐𝑐 in 𝑝𝑝 with positive weight (e.g. green → blue → green on

the left image)
4. If 𝑐𝑐 is removed from 𝑝𝑝, then there will be a shorter 'shortest path' than the shortest

path 𝑝𝑝.
5. This contradicts 1, thus 𝑝𝑝 must be a simple path.
6. Even if 𝑐𝑐 is actually a cycle with zero (0) total weight — it is possible according to the

assumption: no negative weight cycle (see the same green → blue → green), 𝑐𝑐 still
can be removed from 𝑝𝑝 without increasing the shortest path weight of 𝑝𝑝.

7. In conclusion, 𝑝𝑝 is a simple path (from point 5) or can always be made into a simple
path (from point 6)

Bellman Ford’s Algorithm

Algorithm Outline:

1. Bellman Ford’s Algorithm has the following pseudo code:

for i = 1 to |V|-1 // O(V) here, so O(V×E×1) = O(V×E)
 for each edge(u, v) ∈ E // O(E) here, e.g. by using an Edge List
 relax(u, v, w(u, v)) // O(1) here

2. From the pseudo code, the algorithm runs in a time complexity of 𝑂𝑂(𝑉𝑉𝑉𝑉).
3. The optimized form of Bellman Ford’s Algorithm runs in 𝑂𝑂(𝐾𝐾𝐾𝐾) where 𝐾𝐾 is the number of iterations before no further updates are done to the path distance of each

vertices from the source vertex.
4. Bellman Ford’s Algorithm ensures shortest path from source vertex to all the vertices in the graph after it terminates:

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

39

Proof by Induction:
1. Initially, 𝐷𝐷[𝑣𝑣0] = 𝛿𝛿(𝑠𝑠, 𝑣𝑣0) = 0, as 𝑣𝑣0 is just the source vertex 𝑠𝑠
2. After 1 pass through 𝐸𝐸, we have 𝐷𝐷[𝑣𝑣1] = 𝛿𝛿(𝑠𝑠, 𝑣𝑣1)
3. After 2 pass through 𝐸𝐸, we have 𝐷𝐷[𝑣𝑣2] = 𝛿𝛿(𝑠𝑠, 𝑣𝑣2)
4. After 𝑘𝑘 pass through 𝐸𝐸, we have 𝐷𝐷[𝑣𝑣𝑘𝑘] = 𝛿𝛿(𝑠𝑠, 𝑣𝑣𝑘𝑘)
5. When there is no negative weight cycle, the shortest path 𝑝𝑝 is a simple path

(see Theorem 1), thus the last iteration should be iteration |𝑉𝑉| − 1
6. After |𝑉𝑉| − 1 pass through 𝐸𝐸 , we have 𝐷𝐷[𝑣𝑣|𝑉𝑉|−1] = 𝛿𝛿(𝑠𝑠, 𝑣𝑣|𝑉𝑉|−1) ,

regardless the ordering of edges in 𝐸𝐸

5. Bellman Ford's Algorithm can be used to detect if the input graph contains at least one negative weight cycle reachable from the source vertex 𝑠𝑠 by using the corollary
of theorem in point 4: If at least one value D[v] fails to converge after |𝑉𝑉| − 1 passes, then there exists a negative-weight cycle reachable from the source vertex 𝑠𝑠.

Dijkstra’s Algorithm

Algorithm Outline:

1. The algorithm maintains a set 𝑆𝑆 of solved vertices whose final shortest path weights have been determined. Initially 𝑆𝑆 = {𝑠𝑠}, the source vertex 𝑠𝑠 only.
2. It repeatedly selects vertex 𝑢𝑢 in {𝑉𝑉\𝑆𝑆} with the minimum shortest path estimate, adds 𝑢𝑢 to 𝑆𝑆, and relaxes all outgoing edges of 𝑢𝑢
3. This entails the use of a Priority Queue as the shortest path estimates keep changing as more edges are processed.
4. The choice of relaxing edges emanating from vertex with the minimum shortest path estimate first is greedy, i.e. use the "best so far.

Properties:

1. Dijkstra’s algorithm runs with a time complexity of 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉):
a. Each vertex will only be extracted from the Priority Queue (PQ) once. As there are 𝑉𝑉 vertices, this will be done maximum 𝑂𝑂(𝑉𝑉) times. ExtractMin()

operation runs in 𝑂𝑂(log𝑉𝑉) whether the PQ is implemented using a Binary Min Heap or using a balanced BST. Therefore this part is 𝑂𝑂(𝑉𝑉 log𝑉𝑉).
b. Every time a vertex is processed, its neighbours are relaxed. In total, 𝐸𝐸 edges are processed. By relaxing 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢, 𝑣𝑣), as there is a need to decrease D[v], call

the 𝑂𝑂(log𝑉𝑉) DecreaseKey() operation in Binary Min Heap (harder to implement as C++ STL priority_queue does not support this operation efficiently
yet) or simply delete the old entry and then re-insert a new entry in balanced BST (which also runs in 𝑂𝑂(log𝑉𝑉), but this is much easier to implement).
Therefore, this part is 𝑂𝑂(𝐸𝐸 log𝑉𝑉).

c. Overall, Dijkstra's algorithm runs in 𝑂𝑂(𝑉𝑉 log𝑉𝑉 + 𝐸𝐸 log𝑉𝑉) = 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉) time.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

40

2. When input graph has at least one negative weight edge, Dijkstra’s Algorithm can produce wrong answer. This is because even though the shortest path for the
vertices that have negative edges will be updated as per normal, the neighbour vertices of the affected vertices will not have their paths updated as the affected
vertices are no longer processed.

Modified Dijkstra’s Algorithm

Algorithm Outline:

1. Key modification done is the use of Lazy Update as DecreaseKey() operation in priority queue.
a. Lazy Update leave the outdated/weaker/bigger-valued information in the minimum priority queue instead deleting it straight-away.
b. Since the items are ordered from smaller value to bigger values in the minimum priority queue, it is guaranteed that the most up-to-date (smallest) item will

be encountered first.

Properties:

1. On non-negative weighted graphs, the behaviour is exactly the same as the original Dijkstra's and has a time complexity of 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉).
2. On graph with at least one negative weight edge but no negative weight cycle, the time complexity can be greater than 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉).

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

41

Single Source Shortest Path Algorithms

Graph Type Algorithm Time Complexity Remarks
Unweighted Graph Breadth-First-Search 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) Simple modifications need to be made in order for BFS to solve the

unweighted version of the SSSP problem:

1. First, change Boolean array visited to integer array D.
2. At the start of BFS, instead of setting visited[u] = false,

set D[u] = 1e9 (a large number to symbolise +∞ or even -1
to symbolise 'unvisited' state, but we cannot use 0 as D[0] =
0) ∀𝑢𝑢 ∈ 𝑉𝑉\{𝑠𝑠}; Then we set 𝐷𝐷[𝑠𝑠] = 0

3. We change the BFS main loop to
if (D[v] = 1e9) { D[v] = D[u]+1 ... } // v is 1
step away from u

Graph without Negative Edges Dijkstra’s Algorithm 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉)
Graph without Negative Weight Cycle Modified Dijkstra’s Algorithm ≥ 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉)
Trees (Weighted/Unweighted) Depth-First-Search

Breadth-First-Search
𝑂𝑂(𝑉𝑉) In a Tree, there is only one unique and acyclic path that connects two

distinct vertices. Thus the unique path that connects the source vertex
𝑠𝑠 to any another vertex 𝑢𝑢 ∈ 𝑉𝑉 is actually also the shortest path.

This also gives rise to the 𝑂𝑂(𝑉𝑉) time complexity.

Directed Acyclic Graph Dynamic Programming 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) Compute the topological order of the graph and relaxes the outgoing
edge of vertices listed in the topological order. This can be achieved
with a time complexity of 𝑂𝑂(𝑉𝑉 + 𝐸𝐸).

This is also known as one-pass Bellman Ford’s algorithm as it is
essentially Bellman Ford’s algorithm being executed only once with the
topological order instead of 𝑉𝑉 − 1 times.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

42

All Pair Shortest Path Algorithms

Graph Type Algorithm Time Complexity Remarks
Any Dijkstra’s Algorithm 𝑂𝑂(𝑉𝑉(𝑉𝑉 + 𝐸𝐸) log𝑉𝑉) Execute Dijkstra’s algorithm V times to find the shortest path between

all vertices.
Floyd-Warshall Algorithm 𝑂𝑂(𝑉𝑉3) Using an Adjacency Matrix where AM[i][j] represents the distance

between vertex i and vertex j, the shortest path AM[i][j] =
min(AM[i][j], AM[i][k] + AM[k][j]) where k = [0, 1, 2, 3 … N)
as shown below:

 for (int k = 0; k < V; k++)
 for (int i = 0; i < V; i++)
 for (int j = 0; j < V; j++)
 if (AM[i][j] < AM[i][k] + AM[k][j])
 AM[i][j] = AM[i][k] + AM[k][j];

Effectively, the three for-loop algorithm calculates the distance
between vertex i and vertex j by checking if vertex i and vertex j has a
common neighbour (eg. vertex k) and calculate the distance between
vertex i to vertex k and vertex k to vertex j. If the new distance is smaller
than the existing distance in AM[i][j], AM[i][j] gets updated with
the new distance.

Additional Notes:

1. Both Floyd-Warshall and Dijkstra’s algorithm can also be used to determine 𝑘𝑘th-shortest path from 𝑖𝑖 to 𝑗𝑗. This can be achieved by:
a. Choosing an 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠, 𝑡𝑡). Time complexity for this step is 𝑂𝑂(𝐸𝐸).
b. If using Floyd-Warshall algorithm with time complexity of 𝑂𝑂(𝑉𝑉3):

i. Obtain the shortest path from 𝑖𝑖 to 𝑠𝑠 and from 𝑡𝑡 to 𝑗𝑗 using the Adjacency Matrix from the resulting Floyd-Warshall algorithm.
c. If using Dijkstra’s algorithm with time complexity of 𝑂𝑂((𝑉𝑉 + 𝐸𝐸) log𝑉𝑉).

i. Determine the shortest path from 𝑖𝑖 to 𝑠𝑠.
ii. Determine the shortest path from 𝑡𝑡 to 𝑗𝑗 (this requires graph with reverse edges).

d. The total distance can then be calculated by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑠𝑠) + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑠𝑠, 𝑡𝑡) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡, 𝑗𝑗).
e. Ensure that distance calculated is less than distance of 𝑘𝑘 − 1 shortest path.

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

43

Appendices
DFS and BFS Implementation

void dfs(int &vertex, vector<bool> &visited, vector<vector<int>> AdjList) {
 visited[vertex] = true; // Set status of current vertex to visited
 cout << vertex << endl; // Prints current vertex

 // For all neighbours of current vertex
 for (auto &i : AdjList[vertex])
 // Check if neighbour vertex has been visited
 if (!visited[i])
 // If not visited, run dfs on neighbour vertex
 dfs(i, visited);
}

void bfs(int &source, vector<bool> &visited, vector<vector<int>> AdjList) {
 queue<int> q;

 visited[source] = true; // Set status of source vertex to visited
 q.push(source); // Push source vertex into queue

 // While there are still vertices in the queue to be processed
 while (!q.empty()) {
 int buffer = q.front();
 cout << buffer << endl; // Print current vertex to be processed
 q.pop(); // Remove current vertex from the queue

 // For all neighbours of current vertex
 for(auto &i : AdjList[buffer])
 // Check if neighbour vertex has been visited
 if(!visited[i]) {
 // If not visited, set status neighbour to be visited and push neighbour into the queue
 visited[i] = true;
 q.push(i);
 }
 }
}

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

44

Topological Sort Implementation (DFS Method)

class Graph {
 int V; // No. of vertices'

 // Pointer to an array containing adjacency listsList
 list<int> *adj;

 // A recursive function used by topologicalSort
 void topologicalSortUtil(int v, bool visited[], stack<int> &Stack) {
 // Mark the current node as visited.
 visited[v] = true;

 // Recur for all the vertices adjacent to this vertex
 list<int>::iterator i;
 for (i = adj[v].begin(); i != adj[v].end(); ++i)
 if (!visited[*i])
 topologicalSortUtil(*i, visited, Stack);

 // Push current vertex to stack which stores result
 Stack.push(v);
 }
public:
 Graph(int V) { // Constructor
 this->V = V;
 adj = new list<int>[V];
 }

 // function to add an edge to graph
 void addEdge(int v, int w) {
 adj[v].push_back(w); // Add w to v’s list.
 }

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

45

 // // The function to do Topological Sort. It uses recursive topologicalSortUtil()
 void topologicalSort() {
 stack<int> Stack;

 // Mark all the vertices as not visited
 bool *visited = new bool[V];
 for (int i = 0; i < V; i++)
 visited[i] = false;

 // Call the recursive helper function to store Topological
 // Sort starting from all vertices one by one
 for (int i = 0; i < V; i++)
 if (visited[i] == false)
 topologicalSortUtil(i, visited, Stack);

 // Print contents of stack
 while (Stack.empty() == false) {
 cout << Stack.top() << " ";
 Stack.pop();
 }
 }
};

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

46

Topological Sort Implementation (BFS Method/Kahn’s Algorithm)

class Graph {
 int V; // No. of vertices'

 // Pointer to an array containing adjacency listsList
 list<int> *adj;

public:
 Graph(int V) { // Constructor
 this->V = V;
 adj = new list<int>[V];
 }

 // function to add an edge to graph
 void addEdge(int u, int v) {
 adj[u].push_back(v);
 }

 // prints a Topological Sort of the complete graph
 void topologicalSort() {
 // Create a vector to store indegrees of all vertices. Initialize all indegrees as 0.
 vector<int> in_degree(V, 0);

 // Traverse adjacency lists to fill indegrees of vertices. This step takes O(V+E) time
 for (int u=0; u<V; u++) {
 list<int>::iterator itr;
 for (itr = adj[u].begin(); itr != adj[u].end(); itr++)
 in_degree[*itr]++;
 }

 // Create an queue and enqueue all vertices with indegree 0
 queue<int> q;
 for (int i = 0; i < V; i++)
 if (in_degree[i] == 0)
 q.push(i);

 // Initialize count of visited vertices
 int cnt = 0;

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

47

 // Create a vector to store result (A topological ordering of the vertices)
 vector <int> top_order;

 // One by one dequeue vertices from queue and enqueue adjacents if indegree of adjacent becomes 0
 while (!q.empty()) {
 // Extract front of queue (or perform dequeue) and add it to topological order
 int u = q.front();
 q.pop();
 top_order.push_back(u);

 // Iterate through all its neighbouring nodes of dequeued node u and decrease their in-degree by 1
 list<int>::iterator itr;
 for (itr = adj[u].begin(); itr != adj[u].end(); itr++)

 // If in-degree becomes zero, add it to queue
 if (--in_degree[*itr] == 0)
 q.push(*itr);

 cnt++;
 }

 // Check if there was a cycle
 if (cnt != V)
 {
 cout << "There exists a cycle in the graph\n";
 return;
 }

 // Print topological order
 for (int i=0; i<top_order.size(); i++)
 cout << top_order[i] << " ";
 cout << endl;
 }
};

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

48

Bellman Ford’s Algorithm Implementation

void BellmanFord() {
 int V, E, s, a, b, w;
 vector<vector<pair<int, int>>> AdjList;

 cin >> V >> E >> s;

 AdjList.assign(V, vector<pair<int, int>>()); // assign blank vectors of pair<int, int>s to AdjList
 for (int i = 0; i < E; i++) {
 cin >> a >> b >> w;
 AdjList[a].push_back(pair<int, int> (b, w));
 }

 // Bellman Ford routine
 vector<int> dist(V, INF);
 dist[s] = 0;
 for (int i = 0; i < V - 1; i++) // relax all E edges V-1 times, overall O(VE)
 for (int u = 0; u < V; u++) // these two loops = O(E)
 for (int j = 0; j < (int)AdjList[u].size(); j++) {
 pair<int, int> v = AdjList[u][j]; // we can record SP spanning here if needed
 dist[v.first] = min(dist[v.first], dist[u] + v.second); // relax
 }

 bool hasNegativeCycle = false;

 for (int u = 0; u < V; u++) // one more pass to check
 for (int j = 0; j < (int)AdjList[u].size(); j++) {
 pair<int, int> v = AdjList[u][j];
 if (dist[v.first] > dist[u] + v.second) // should be false
 hasNegativeCycle = true; // but if true, then negative cycle exists!
 }
 printf("Negative Cycle Exist? %s\n", hasNegativeCycle ? "Yes" : "No");

 if (!hasNegativeCycle)
 for (int i = 0; i < V; i++)
 printf("SSSP(%d, %d) = %d\n", s, i, dist[i]);

}

Dijkstra’s Algorithm Implementation

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

49

void Dijkstra() {

 int n; // Number of vertices
 int s; // Source vertex

 vector<int> dist(n, INF);
 dist[s] = 0;

 set<pair<int, int>> pq;
 pq.insert({0, s});
 for (u = 0; u < n; u++) // O(V log V) already
 if (u != s)
 pq.insert({INF, u});

 while (!pq.empty()) {
 pair<int, int> front = *pq.begin(); // this is the min, O(log V)
 pq.erase(pq.begin()); // erase / extract min, O(log V), twice

 d = front.first; // this value is actually the same as dist[u]
 u = front.second;

 for (auto &v_weight : AL[u]) { // for all neighbors of vertex u, O(k)
 v = v_weight.first;
 w = v_weight.second;
 if (dist[u]+w < dist[v]) { // if can relax this edge, O(1)
 // update/decrease PQ value :O
 pq.erase(pq.find({dist[v], v})); // delete the old one, O(log V) twice (reason negative edge is not allowed)
 dist[v] = dist[u]+w; // O(1)
 pq.insert({dist[v], v}); // delete the old one, O(log V)
 }
 }
 }
}

mailto:xianhao@comp.nus.edu.sg

xianhao@comp.nus.edu.sg CS2040C AY17/18 S2

50

Modified Dijkstra’s Algorithm Implementation

void ModifiedDijkstra() {

 int n; // Number of vertices
 int s; // Source vertex

 // compute the shortest path values, using Dijkstra's
 vector<int> dist(n, INF);
 dist[s] = 0;

 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
 pq.push({0, s});

 while (!pq.empty()) {
 pair<int, int> min = pq.top();
 pq.pop(); // O(1) + O(log V)

 d = min.first;
 u = min.second;

 // This prevents the degeneration of Modified Dijkstra's into a kind of Bellman Ford's
 if (dist[u] < d)
 continue;

 for (auto &v_weight : AL[u]) {
 v = v_weight.first; w = v_weight.second;
 if (dist[u]+w < dist[v]) { // if can relax this edge
 dist[v] = dist[u]+w;
 pq.push({dist[v], v}); // O(log V), insert the new pair, with lower dist[v]
 }
 }
 }
}

mailto:xianhao@comp.nus.edu.sg

	Chapter 1 Sorting
	Chapter 2 Linked List
	Chapter 3 Binary Heap
	Chapter 4 Hash Tables
	Chapter 5: Binary Search Tree
	Chapter 6: Graphs
	Chapter 7: Single Source Shortest Path
	Appendices

