MA1508E: Linear Algebra for Engineering

elston.avx@u.nus.edu

Equivalent Statements

Let **A** be a $n \times n$ matrix. The following statements are equivalent.

- 1. A is invertible 2. Ax = 0 has only the trivial solution
- 3. The RREF of A is I.
- 4. A can be expressed as a product of elementary matrices.
- 5. det(A) $\neq 0$
- 6. The rows of **A** forms a basis for \mathbb{R}^n . 7. The columns of **A** forms a basis for \mathbb{R}^n
- 8. rank(A) = n9. 0 is not an eigenvalue of A
- 10. Ax = b has a unique solution for each $b \in \mathbb{R}^n$
- 11. Nullspace of $A = \{0\}$
- 12. nullity(A) = 0
- 13. A^T is invertible.
- 14. The REF of *A* has *n* leading entries. 15. The columns/rows of A are linearly independent.
- 16. The columns/rows of A span \mathbb{R}^n .
- 17. The column space/row space of A is \mathbb{R}^n .
- 18. The dimension of the column space/row space is *n*.
- 19. The only vector orthogonal to the col/row space of A is 0.

Week 1: Introduction to Linear Systems Elementary Row Operations

- 1. Multiplying the *i*th row by a non-zero constant $c. (cR_i)$
- 2. Interchanging the *i*th row and the *j*th row. $(R_i \leftrightarrow R_i)$
- 3. Adding k times the *i*th row to the *i*th row. $(R_i + kR_i)$

Row Echelon Form

- 1. For two consecutive non-zero rows, the first nonzero entry of the lower row is further right than the one on top.
- 2. Pivot column is the column that consist of a pivot point.

Week 2: Linear Systems and Gauss Jordan Elimination Types of Linear Systems

Inconsistent – Last column is a pivot column.

Unique Solution – Last column is not pivot and every column on the left is nivot

Infinitely Many Solutions – Last column is not pivot and some column on the left is not pivot

Gaussian Elimination

- 1. Locate the leftmost column that does not consist of entirely zeroes
- 2. Interchange the top row with another row to bring a nonzero entry to the top of the column.
- 3. For each row below the top row, add a suitable multiple of the top row so that the entries below the leading entry of the top row becomes zero.
- 4. Cover the top row matrix and begin with (1.) applied to the submatrix that remains. Continue till matrix is in row echelon form

Jordan Elimination

- 5. Multiply a suitable constant to each row so that all the leading entries become 1.
- 6. Begin with the last non-zero entry and working upwards, add suitable multiples of each row to the row above to introduce zeroes above the leading entry.

 Matrices A and B are considered equal when a_{ij} = b_{ij} ∀ i, j 						
2. For matrix A and B that are $m \times n$,						
1. $A + B = (a_{ij} + b_{ij})$ 2. $A - B = (a_{ij} - B_{ij})$						
3. $cA = (ca$	_{ii})	4. $-A = (-1)A$				
3. Matrices of different sizes cannot be added or subtracted.						
A, B and C are ma	atrices, and c	and d are scalar values.				
Commutative	-	A + B = B + A				
Associative	-	A + (B + C) = (A + B) + C				
	-	c(dA) = (cd)A = d(cA)				
	-	A(BC) = (AB)C				
	-	c(AB) = (cA)B = A(cB)				
Distributive	-	c(A+B) = cA + cB				
	-	(c+d)A = cA + dA				
	-	$A(B_1 + B_2) = AB_1 + AB_2$				
	-	$(C_1 + C_2)A = C_1A + C_2A$				

Matrix Multiplication

1

Week 3: Matrix Operations

Let $A = (a_{ij})_{m \times p}$ and $B = (b_{ij})_{p \times n}$. AB will be an $m \times n$ matrix, whose (i, j)-entry is given by $a_{i1}b_{1i} + a_{i2}b_{2i} + \dots + a_{in}b_{ni} = \sum_{k=1}^{p} a_{ik}b_{ki}$ Pre-multiplication A to $B \rightarrow AB$ Post-multiplication A to $B \rightarrow BA$

Matrix Inverses and Inverse Laws

A is said to be invertible if there exists another square matrix B of the same order such that $AB = BA = I_n$. If such an B exists, it is called an inverse of A. Else, A is said to be singular.

Let A be an invertible square matrix.

1.	$A^{-1}AB = B$	2.	$AA^{-1}B = B$
3.	$(cA)^{-1} = \frac{1}{c}A^{-1}$	4.	$(A^T)^{-1} = (A^{-1})^T$
5.	$(A^{-1})^{-1} = A$	6.	$(AB)^{-1} = B^{-1}A^{-1}$
7.	$(A_1 A_2 \dots A_k)^{-1} =$	8.	$(A^n)^{-1} = A^{-n}$
	$A_k^{-1} \dots A_2^{-1} A_1^{-1}$		

Matrix Transposition and Rules

Let $A = (a_{ij})_{m \times m}$. The transpose of A, denoted as A^T is an $n \times m$ matrix whose (i, j)-entry is a_{ii} . A matrix is symmetrical if $A = A^T$. 1. $(A^T)^T = A$ 2. $(aA)^T = aA^T$ 3. $(A + B)^T = A^T + B^T$ 4 $(AB)^T = B^T A^T$

Week 4: Elementary Matrices

- For any matrix A, there exists elementary matrices $E_k E_{k-1} \dots E_1 A$ which forms the RREF of A. A and B are row equivalent \Leftrightarrow they have similar REF (or same
- unique RREF)
- To obtain elementary matrices, perform ERO on identity matrices.

Definition of Elementary Matrices

A square matrix is an elementary matrix if it can be obtained from I by performing 1 ERO. All elementary matrices are invertible, and its inverse is also an elementary matrix.

Computing Inverses using Gaussian Elimination

If a matrix A is invertible, then $E_k E_{k-1} \dots E_1 A = I_n$. Since $E_k E_{k-1} \dots E_1$ and A are square matrices of same sizes, $E_k E_{k-1} \dots E_1 = A^{-1}$. Hence, to find out what the elementary matrices are, perform the same elementary matrix multiplications on an I simultaneously with A until A forms I. If A is singular, then its RREF will not be I, and hence there will not be an inverse.

Week 5: Determinants and Cofactor Expansion

Definition of Determinants and Cofactor Expansion det $(A) \neq 0 \Leftrightarrow A$ is invertible.

Let A be a square matrix of order n, and M_{ii} be a square matrix of order n-1 obtained by removing the *i*th row and the *j*th column of A.

$$\det(A) = \begin{cases} a_{11} & \text{if } n = 1 \\ a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} & \text{if } n \ge 2 \end{cases}$$

where $A_{ii} = (-1)^{i+j} \det(M_{ii})$. A_{ii} is defined as the (i, i)-cofactor of A_{ii}

Cofactor matrix is the respective cofactor for each entry in A.

Determinants of Special Matrices

Triangular Matrices - det(A) is the product of the diagonal entries. Square Matrix of 2 Identical Rows/Columns - det(A) = 0

Properties of Determinants

Let A and B be two square matrices of order n and c is a scalar. 1. $\det(cA) = c^n \det(A)$ 2. det(AB) = det(A) det(B)3. $\det(A^{-1}) = \frac{1}{\det(A)}$ 4. $det(A) = det(A^T)$

Adjoint Method
$$\frac{1}{4^{-1}} = \frac{1}{2^{-1}} \operatorname{adj}(4) = \frac{1}{2^{-1}} \operatorname{(cofactor matrix)}$$

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{\det(A)} \operatorname{(cofactor matrix of } A)^{T}$$

Cramer's Rule

Ax = b is a linear system where A is an invertible square matrix of order n. For $i = 1, 2, ..., n, A_i$ is a square matrix of order n where the *i*th column is replaced by *b*.

The unique solution of
$$x = \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}$$
 where $x_i = \frac{\det(A_i)}{\det(A)}, i = 1, 2, ..., n$

Week 6: Vectors and Span

- Properties of Euclidean Vectors 1. $v = (v_1, v_2, \dots, v_n), v_i \in \mathbb{R}$ 2. $v \in \mathbb{R}^n$ is called *n*-vector 3. $u = (u_1 \quad u_2 \quad \cdots \quad u_n)$ 4. $u = v \Leftrightarrow (u_1 \quad \cdots \quad u_n) = (v_1 \quad \cdots \quad v_n)$ 5. Length: $|v| = \sqrt{v_1^2 + \dots + v_n^2}$ 6. Distance: $|u - v| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}$ 7. Angle: $\theta = \cos^{-1} \frac{u \cdot v}{dt}$ 8. Dot Product: a. $u \cdot v = u_1 \cdot v_1 + \dots + u_n \cdot v_n$ b. $u \cdot v = uv^T = (u_1 \quad \cdots \quad u_n) \begin{pmatrix} v_1 \\ \vdots \\ \vdots \end{pmatrix}$ Orthogonal Vectors, Orthogonal Sets, and Orthonormal Sets - Two vectors are orthogonal if $u \cdot v = 0$.
- Set $S = \{v_1, \dots, v_k\}$ is orthogonal if every pair of distinct vectors are orthogonal.
- Set S is orthonormal if it is orthogonal, and every vector in S is a unit vector.

Linear Combination

w is a linear combination of v and u if there exists c_1, c_2 such that $w = c_1 v + c_2 u.$

Span

Span is a set of all possible linear combinations of vectors in the set. e.g.

 $S = \{u_1, \dots, u_k \mid u_i \in \mathbb{R}^n\}$ $span(S) = \{ c_1 u_1 + c_2 u_2 + \dots + c_k u_k \mid c \in \mathbb{R} \}$ To check if $\operatorname{span}(S) \neq \mathbb{R}^n$, check whether the augmented matrix formed by S and any $x \in \mathbb{R}^n$ is inconsistent. (i.e. last col. Is pivot)

Redundant Vector Theorem

If u_k is a linear combination of u_1, \ldots, u_{k-1} , then span{ $u_1, ..., u_k$ } = span{ $u_1, ..., u_{k-1}$ }

Week 7: Subspaces

 $V \subseteq \mathbb{R}^n$ subspace of $\mathbb{R}^n \Leftrightarrow$ some $S = \{u_1, \dots, u_k\}, u_i \in \mathbb{R}^n$, $\operatorname{span}(S) = V \Rightarrow \{c_1 u_1 + \dots + c_n u_n \mid c_i \in \mathbb{R}\}$

Properties

- 1. V is the subspace spanned by $S = \{u_1, \dots, u_k\}$.
- 2. *V* must contain the zero vector.

3. Subspace must be expressed as a linear span NOTE: Vectors in S need not be linearly independent.

Zero Space

 $\{0\} = \operatorname{span}\{0\}$ is a subspace of \mathbb{R}^n , a.k.a. zero space of \mathbb{R}^n . The only subspace of \mathbb{R}^n with finite number and thus least vectors.

Linear Independence

For $S \subseteq \mathbb{R}^n$, if $c_1u_1 + c_2u_2 + \dots + c_ku_k = 0$ only has the trivial solution ($c_i = 0 \forall i \leq k$), then S is a set of *linearly independent* vectors. Else, vectors in S are *linearly dependent*.

a. Trivial Solution – Vectors are linearly independent

1. If $u \in S$ is a redundant vector, then S is linearly dependent.

The solution set for a homogenous system of linear equations with

2. *S* is linearly independent. (check if only trivial solution)

- Any set cannot span $V \in \mathbb{R}^k$ if it has less than k vectors

1. S is linearly independent and |S| = k where |V| = k

than the dimension of Y. (i.e. $dim(X) \leq dim(Y)$)

Dimension of $V = \dim(V) = |V| =$ number of vectors in a basis

- Bases of the same vector space have same number of vectors.

If X is a subspace of Y, then the dimension of X is no larger

- Rows of A are basis for $\mathbb{R}^n \Leftrightarrow$ columns of A are basis for \mathbb{R}^n

- If $S = \{u_1, \dots, u_k\}$ is a basis for V, any $v \in V$ can be written as

 $v = c_1 u_1 + \dots + c_k u_k$ in a unique c_1, \dots, c_k that make up a

2. If |S| > n in \mathbb{R}^n . S is definitely linearly dependent.

b. Non-trivial Solutions - Vectors are linearly dependent

Checking for Linear Independence

Guaranteed Linear Dependence

n unknowns is a subspace of \mathbb{R}^n .

coordinate vector for V.

Vector Spaces/Bases

1. $\operatorname{span}(S) = V$

Dimension

S is a basis for $V \Leftrightarrow$

2. $\operatorname{span}(S) = V$

(means A is invertible)

Week 8: Vector Spaces, Bases, Dimensions

V is a vector space if $V \subseteq \mathbb{R}^n$. If *S* is a basis for *V*:

- If $S_1 \neq S_2$ are basis for V, then $v \in S_1 \neq v \in S_2$

1. Form vector equation \rightarrow Form linear system 2. Solve using GIE

Week 9: Row Space, Column Space, Rank, Nullspace Row Space and Basis for Row Spaces

Let A and B be row equivalent matrices. (i.e. row space of A and B are identical)

Performing ERO on A does not change the row space. i.e. $A \xrightarrow{cR_i} B$ or $A \xrightarrow{R_i \leftrightarrow R_j} B$ or $A \xrightarrow{R_i + cR_j} B$ does not affect the spans, hence have equivalent row spaces.

To find the basis of A:

 Find the row echelon form R of A by GE. The non-zero rows of R will be a basis for the row space of A.
 NOTE: For rows that form zero-rows, it is a linear combination of

the non-zero rows.

Column Space and Basis for Column Spaces

NOTE: ERO preserves the row space but $\it NOT$ the column space. To find the column space of A,

Method 1: Perform ERO on the transpose of the matrix. (i.e. col. space of A = row space of A^{T})

Method 2: The columns of A that correspond to the pivot columns in r.e.f. R will be the basis for the col. space. e.g.

$ = \begin{pmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & -2 & 0 & -1 \end{pmatrix} \stackrel{\text{GE}}{\rightarrow} \begin{pmatrix} 2 & 2 & -1 & 0 & 1 \\ 0 & 0 & 1.5 & -3 & 1.5 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} $												Basis for col space:
	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$	2 -1 0 1	-1 2 1 -2	0 -3 1 0	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$	$\stackrel{GE}{\rightarrow}$	2 0 0 0	2 0 0 0	-1 1.5 0 0	0 -3 3 0	$\begin{pmatrix} 1 \\ 1.5 \\ 0 \\ 0 \end{pmatrix}$	$\left\{ \begin{pmatrix} 2\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\1\\-2 \end{pmatrix}, \begin{pmatrix} 0\\-3\\1\\0 \end{pmatrix} \right\}$

Rank of Matrix

The row space and col. space of a matrix have same dimensions.

 Basis of the row space are pivot columns, and basis of column space are the corresponding pivot columns, hence both will have the same dimension.

Properties:

- 1. rank(A) is the dimension of the row/column space
- 2. For an $m \times n$ matrix A, rank $(A) \le \min\{m, n\}$.
- 3. If $rank(A) = min\{m, n\}$, then A is full rank.
- 4. $rank(AB) \le min (rank(A), rank(B))$
- 5. $\operatorname{rank}(A^T) = \operatorname{rank}(A)$ 6. $\operatorname{rank}(AB)^T = \operatorname{rank}(B^T A^T)$

Linear Systems and Column Spaces

Given a linear system Ax = b,

- Ax = b is consistent \rightarrow There is a solution $x = \{x, y, z\}$ to satisfy the linear system.
- *b* is a linear combination of the columns of *A* (i.e. *b* belongs in the col. space of *A*)

Hence,

1. Linear system will be consistent if *b* lies in col. space of *A*.

2. Ax = b is consistent \Leftrightarrow rank(A) = rank $(A \mid b)$

Nullspace of a Matrix

Let A be an $m \times n$ matrix. Ax = 0 is a homogenous linear system with n variables (i.e. there are n col. vectors)

- The solution set/solution space/nullspace of Ax = 0 is a subspace of \mathbb{R}^n
- The dimension of the nullspace of A, nullity(A) $\leq n$ since it is a subspace of \mathbb{R}^n .

Dimension Theorem for Matrices

Non-pivot Columns	
No. of non-pivot	
columns	
No. of arbitrary	
parameters in a general	
solution to $Ax = 0$	
nullity(A)	= 1
	Non-pivot Columns No. of non-pivot columns No. of arbitrary parameters in a general solution to $Ax = 0$ nullity(A)

General Solutions of Linear Systems

The entire solution set for Ax = b can be obtained by adding: 1. The nullspace of A (i.e. solution set/space for Ax = 0) 2. A particular solution to Ax = b

If nullity(A) = 0, then it has only 1 solution of x for Ax = b. However, if nullity(A) > 0, then it has infinitely many solutions.

Solution Set = Particular Solution + General Solution

Week 10: Orthogonal Bases, Projection, Least Squares Solution Orthogonal and Orthonormal Bases

A basis ${\cal S}$ is an orthogonal/orthonormal basis if ${\cal S}$ is an orthogonal/orthonormal set.

Determining Orthogonal Bases

For vector space V with dim(V) = k, if S is an orthogonal set of non-zero vectors in V, and |S| = k, then S is an orthogonal basis for V.

Vectors as a Linear Combination of Orthogonal/Orthonormal Basis If $S = \{u_1, ..., u_k\}$ is an orthogonal basis for V then any $w \in V$ can be represented by:

$$w = \left(\frac{w \cdot u_1}{||u_1||^2}\right) u_1 + \dots + \left(\frac{w \cdot u_k}{||u_k||^2}\right) u_k$$

For orthonormal basis, $||u_i||^2 = 1 \forall i \le k$ as vectors in S are unit vectors.

Vectors Orthogonal to a Space

- *u* is orthogonal to *V* ⇔ *u* is orthogonal to all vectors in *V*.
 Finding an orthogonal vector is like finding a normal to the plane in ℝ³ space. *V* = {(*x*, *y*, *z*) | *ax* + *by* + *cz* = 0} Let *n* = (*a*, *b*, *c*). Then *V* = {*u* ∈ ℝ³ | *u* · *n* = 0} where *n* is the orthogonal (normal) vector to *V*.
- Scalar multiples of *n* are also orthogonal vectors to *V*.

Orthogonal Projection Theorem

Let V be a subspace of \mathbb{R}^n . Every $u \in \mathbb{R}^n$ can be uniquely written as u = n + p, where n is orthogonal to V and p is the projection of u onto V. (if $u \in V, n = 0$) To find p, simply find the linear combination of u onto V. Hence to

find the orthogonal vector n to V, n = u - p.

<u>Gram-Schmidt Process (Converting Bases to Orthogonal Bases)</u> Let $\{u_1, u_2, ..., u_k\}$ be a basis for vector space V. Let $v_1 = v_1$:

$$\begin{array}{c} u_{1} & u_{1} & u_{2} \\ v_{2} &= u_{2} - \frac{u_{2} \cdot v_{1}}{||v_{1}||^{2}} v_{1}; \\ \vdots \\ (u_{k} \cdot v_{1} & u_{k} \cdot v_{2} & u_{k} \cdot v_{k-1} \end{array} \right)$$

$$v_{k} = u_{k} - \left(\frac{\frac{u_{k}}{||v_{1}||^{2}}v_{1} + \frac{u_{k}}{||v_{2}||^{2}}v_{2} + \dots + \frac{u_{k}}{||v_{k-1}||^{2}}v_{k-1}\right);$$

Best Approximation

p is the best approximation of $u \in V$ if $d(u, p) \le d(u, v) \forall v \in V$, where *p* is the projection of *u* onto *V*.

Least Squares Solution

- Let Ax = b be a linear system where A is an $m \times n$ matrix. - A vector $u \in \mathbb{R}^n$ is the least squares solution to the linear
- system if $||b Au|| \le ||b Av|| \forall v \in \mathbb{R}^n$ - Ax = b will only be consistent if b belongs to the col. space of
- *A*. (least squares solution will be the exact solution)

Least Squares Solution Methods

Let Ax = b be a linear system. x is the least squares solution to $Ax = b \Leftrightarrow$ x is a solution to $A^TAx = A^Tb$ (a.k.a. the normal equation)

Week 11: Eigenvalues/Eigenvectors/Eigenspaces, Diagonalization Eigenvalues are used to diagonalize square matrices, which can then be used to find high power of matrices easily.

Definition

A non-zero column vector $u \in \mathbb{R}^n$ is an eigenvector of A if $Au = \lambda u$ for some scalar λ . Eigenvalue λ is a scalar value that makes $(\lambda I - A)$ singular. All scalar multiples of u will also be an eigenvector of A associated with the same eigenvalue.

Finding Eigenvalues

NEVER PERFORM ERO TO CONVERT TO TRIANGULAR MATRIX Since u is a non-zero column vector, $det(\lambda I - A) = 0$. To find all eigenvalues, solve the characteristic equation of A. For triangular matrices, eigenvalues of A are its diagonal entries.

Eigenspaces

The eigenspace of A, E_{λ} , associated with λ is the solution space of $\lambda I - A = 0$.

Diagonalizable Matrices

A is diagonalizable if:

- 1. There exists invertible matrix *P* such that $P^{-1}AP = D$
- 2. A has n linearly independent eigenvectors
- 3. A has $k \leq n$ distinct eigenvalues.

Method to determine whether matrix is diagonalizable:

- 1. Solve $det(\lambda I A) = 0$ to find all k distinct λ of A.
- 2. For each λ_i , find a basis S_{λ_i} for eigenspace E_{λ_i} .
- 3. Let $S = S_{\lambda_1} \cup S_{\lambda_2} \cup \dots \cup S_{\lambda_k} = \{u_1, u_2, \dots, u_n\}$
- a. |S| < n, then A is not diagonalizable b. |S| = n, then $P = (u_1 \ u_2 \ \dots \ u_n)$ diagonalizes A.
- b. |S| = n, then $P = (u_1 \quad u_2 \quad \dots \quad u_n)$ diagonalizes A. c. |S| > n, error in calculation

Week 12: System of Linear D.E., Complex Vectors Setting up a Linear Recurrence Set up a transition matrix A, i.e.

 $\begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \end{pmatrix} = A \begin{pmatrix} a_{n-1} \\ a_{n-2} \\ \vdots \end{pmatrix}$

- 1. Determine values of A by relating a_n to the recurrence relation (e.g. $a_n = a_{n-1} + a_{n-2}$)
- 2. Calculate eigenvalues of A, then form equations of $a_n = A\lambda_0^n + B\lambda_1^n + \cdots$
- 3. Solve using initial values of a_n and all λ for A, B,

Fundamental Set

For square matrix A of order n,

- 1. There exist a fundamental set of solutions to Y' = AY.
- 2. *n* linearly independent functions in fundamental set *S*.
- 3. Each solution in *S* is a unique linear combination of *n* functions in *S*.
- 4. *S* is an *n*-dimensional vector space of functions.
- 5. If vector Y_0 is specified, then the initial value problem is to construct a unique Y (in S) such that Y' = AY and $Y(0) = Y_0$

Initial Value Problem

- 1. Form D.E. $y'_1(t)$ to $y'_(t)$.
- 2. Find all eigenvalues of $A, \lambda_1, ..., \lambda_i$.
- 3. Find all linearly independent eigenvectors associated with λ_i
- 4. Construct linear combinations of solution X_1 to X_i .
- 5. General Solution: $Y = k_1 e^{\lambda_1 t} x_1 + k_2 e^{\lambda_2 t} x_2 + \dots + k_i e^{\lambda_i t} x_i$
- 6. Use given initial conditions to solve for $k_1, ..., k_i$.

Properties of Complex Vectors

Complex Eigenvalues

Types of Matrices

Idempotent

 $A^2 = A$

Vector Inequalities

LU Factorisation

QR Factorisation

To convert matrix $A \rightarrow LU$:

useful for multiple values of b.

A = QR, then $x' = R^{-1}Q^Tb$.

forming into a matrix 0.

being each linear combination.

To convert $A \rightarrow OR$:

2.

Let u, v, w, z be vectors in \mathbb{C}^n and if k is a scalar, then						
1.	$\overline{ku} = \overline{k}\overline{u}$	2.	$\overline{u+v} = \overline{u} + \overline{v}$			
3.	$\overline{u-v} = \overline{u} - \overline{v}$	4.	$u \cdot v = \overline{v \cdot u}$			
5.	$u \cdot (v + w) = u \cdot v + u \cdot w$	6.	$k(u \cdot v) = (ku) \cdot v$			
7.	$u \cdot v = u_1 \overline{v_1} + \dots + u_n \overline{v_n}$	8.	$u \cdot kv = \bar{k}(u \cdot v)$			
9.	$ v = \sqrt{v \cdot v} = \sqrt{ v_1 ^2 + v_2 ^2}$	² + ··	$(+ v_n^2)$			
10.	$v \cdot v \ge 0$ and $v \cdot v = 0 \Leftrightarrow v =$	0				
11.	$ z = \sqrt{Re(z)^2 + Im(z)^2}$	12.	$z\bar{z} = z ^2$			
13.	$Re(z) = z \cos \theta$	14.	$Im(z) = z \sin \theta$			
15.	$z = z (\cos\theta + i\sin\theta)$					

The conjugate of a complex eigenvalue is also an eigenvalue of A.

 $e^{\lambda t}x = e^{(a+ib)t}x = e^{at}(\cos bt + i\sin bt)(\operatorname{Re}(x) + i\operatorname{Im}(x))$

 $\operatorname{Re}(e^{\lambda t}x) = e^{at}((\cos bt)\operatorname{Re}(x) - (\sin bt)\operatorname{Im}(x)) = Y_1$

 $Im(e^{\lambda t}x) = e^{at}((\cos bt)Im(x) + (\sin bt)Re(x)) = Y_2$

Orthogonal

 $A^{-1} = A^T$

Linear systems involving triangular coefficient matrices are easy to

deal with. LU factorization can decompose matrices to upper and

 $L = E_k^{-1} E_{k-1}^{-1} \dots E_1^{-1} I, \quad A \xrightarrow{GE} U$ $Ax = b \Rightarrow L(Ux) = b$

Solving for y = Ux and Ly = b, one can find b easily. This will be

QR Factorisation can be useful in finding least squares solution to a

linear system Ax = b. Q is a matrix with orthonormal columns and

 $A^{T}Ax = A^{T}b \Rightarrow (QR)^{T}(QR)x = (QR)^{T}b \Rightarrow x = R^{-1}Q^{T}b$

1. Use Gram-Schmidt Process to transform the column

space of matrix A into an orthonormal column space,

Express each column of A as a linear combination of columns in Q. Form upper triangular matrix R with rows

R is an upper triangular matrix with positive diagonal entries.

This implies that to find a least squares solution, if we have

lower triangular matrices to perform substitutions easily.

Note: Not all matrices can be written in LU form.

Symmetric

 $A = A^T$

Types of Matrices and Factorisation Techniques

Cauchy-Schwarz Inequality – $|u \cdot v| \le ||u|| ||v||$

Triangle Inequality – $||u + v|| \le ||u|| + ||v||$

and the conjugate eigenvector is also the corresponding vector.